
BerlinMOD Benchmark on MobilityDB i

BerlinMOD Benchmark on MobilityDB

BerlinMOD Benchmark on MobilityDB ii

COLLABORATORS

TITLE :

BerlinMOD Benchmark on MobilityDB

ACTION NAME DATE SIGNATURE

WRITTEN BY Esteban Zimányi September 23, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

BerlinMOD Benchmark on MobilityDB iii

Contents

1 MobilityDB Tutorial 1

1.1 Installation . 1

1.2 Loading the Data . 4

1.3 Loading the Data in Partitioned Tables . 7

1.4 Exploring the Data . 9

1.5 Querying the Data . 12

1.5.1 Range Queries . 12

1.5.2 Temporal Aggregate Queries . 13

1.5.3 Distance Queries . 14

1.5.4 Nearest-Neighbor Queries . 15

2 Generating Realistic Trajectory Datasets 18

2.1 Introduction . 18

2.2 Contents . 18

2.3 Tools and Data . 19

2.4 Quick Start . 19

2.5 Exporting the Generated Data . 20

2.6 Exploring the Generated Data . 22

2.7 Understanding the Generation Process . 26

2.8 Customizing the Generator to Your City . 35

2.9 Tuning the Generator Parameters . 36

2.10 Changing the Simulation Scenario . 38

2.11 Creating a Graph from Input Data . 42

2.11.1 Creating the Graph . 43

2.11.2 Linear Contraction of the Graph . 47

3 BerlinMOD Benchmark on MobilityDB 52

3.1 Loading the Data . 52

3.2 Loading the Data in Partitioned Tables . 56

3.3 BerlinMOD/R Queries . 57

BerlinMOD Benchmark on MobilityDB iv

List of Figures

1.1 Configuration of a connection to the docker image in pgAdmin. 3

1.2 Visualization of the trajectories of the trips in QGIS. 10

2.1 Visualization of the trips generated. The edges of the network are shown in blue, the edges traversed by the trips
are shown in black, the home nodes in black and the work nodes in red. 21

2.2 Visualization of a long trip. 23

2.3 Assigning in QGIS a gradient color from blue to red according to the value of the attribute count. 25

2.4 Visualization of the edges of the graph according to the number of trips that traversed the edges. 25

2.5 Visualization of the edges of the graph according to the speed of trips that traversed the edges. 27

2.6 Defining the bounding box for obtaining OSM data from Barcelona. 35

2.7 Visualization of the data generated for the deliveries scenario. The road network is shown with blue lines, the
warehouses are shown with a red star, the routes taken by the deliveries are shown with black lines, and the
location of the customers with black points. 42

2.8 Visualization of the deliveries of one vehicle during one day. A delivery trip starts and ends at a warehouse and
make the deliveries to several customers, four in this case. 43

2.9 Comparison of the nodes obtained (in blue) with those obtained by osm2pgrouting (in red). 48

2.10 Comparison of the nodes obtained by contracting the graph (in black), before contraction (in blue), and those
obtained by osm2pgrouting (in red). 51

Abstract

MobilityDB is an extension to the PostgreSQL object-relational database system and its spatial extension PostGIS. It allows
temporal and spatio-temporal objects to be stored in the database, that is, objects whose attribute values and/or location evolves
in time. This document shows an implementation of the BerlinMOD benchmark that is described in:

Düntgen, C., Behr, T. and Güting, R.H. BerlinMOD: a benchmark for moving object databases. The VLDB Journal
18, 1335 (2009). https://doi.org/10.1007/s00778-009-0142-5

It starts with a tutorial introducing MobilityDB based on BerlinMOD data, continues by explaining how to generate realistic
trajectory datasets of arbritrary size, and concludes by explaining how to run the BerlinMOD benchmark on MobilityDB.

MobilityDB is open source and its code is available on Github. MobilityDB is developed by the Computer & Decision Engi-
neering Department of the Université libre de Bruxelles (ULB) under the direction of Prof. Esteban Zimányi. ULB is an OGC
Associate Member.

https://doi.org/10.1007/s00778-009-0142-5
https://github.com/MobilityDB/MobilityDB

BerlinMOD Benchmark on MobilityDB 1 / 60

Chapter 1

MobilityDB Tutorial

To illustrate the capabilities of MobilityDB, we give an example use case that loads, explores, and query mobility data. The
data used is based on the MobilityDB implementation of the BerlinMOD benchmark for moving object databases. The data is
available as a ZIP file.

1.1 Installation

For this tutorial we can use two alternative installations:

• Install from sources

• Use a Docker image containing MobilityDB and all its dependencies (including PostgreSQL and PostGIS)

We explain first the installation from sources and later in this section we explain the installation using a Docker image.

In order to use this tutorial you must first have MobilityDB installed in your system. We refer to the MobilityDB documentation
for doing this task. Then we can install the MobilityDB-BerlinMOD tutorial as follows.

git clone https://github.com/MobilityDB/MobilityDB-BerlinMOD.git
cd MobilityDB-BerlinMOD/BerlinMOD

We explain now how to explore this tutorial using a Docker image that contains MobilityDB and all its dependencies (including
PostgreSQL and PostGIS). The container has a default database called mobilitydb with the MobilityDB extension installed
where user = pw = docker. This presupposes that you have installed Docker into your computer. In that case, you can run
the following command.

docker pull codewit/mobilitydb
docker volume create mobilitydb_data
docker run --name "mobilitydb" -d -p 25432:5432 -v mobilitydb_data:/var/lib/postgresql
codewit/mobilitydb

In the above commands

• docker pull downloads the Docker image of mobilitydb. If the image has been downloaded before, this checks whether
a more recent image has been published in the docker repository, and downloads it. It is better to call this command every time,
to ensures that you have the latest most up-to-date version of this image.

• docker volume create mobilitydb_data creates a volume container on the host, that we will use to persist the
PostgreSQL database files outside of the MobilityDB container. You need to run this command only once, during the first use
of the image

https://github.com/MobilityDB/MobilityDB-BerlinMOD
http://dna.fernuni-hagen.de/secondo/BerlinMOD/BerlinMOD.html
https://docs.mobilitydb.com/data/berlinmod_data.zip
https://github.com/MobilityDB/MobilityDB

BerlinMOD Benchmark on MobilityDB 2 / 60

• docker run --name=mobilitydb tells Docker our new container will be named mobilitydb.

• -d runs the container in the background (detached mode).

• -p 25432:5432 maps TCP port 5432 in the container to port 25432 on the Docker host (to prevent potential conflicts with
any local database instance you may have). This is required because the PostgreSQL database server in the container listens
for connections on port 5432 by default.

• -v mobilitydb_data:/var/lib/postgresql tells the container filesystem to mount the mobilitydb_data vol-
ume that we have just created to the path /var/lib/postgresql. This means that any database objects that the container saves or
creates (by default in /var/lib/postgresql) will instead be persisted in the mobilitydb_data directory, which is
stored in the host. This options ensures that your data will not be lost when the container is removed.

• codewit/mobilitydb tells Docker to pull the docker image with that name from Docker Hub.

Now we can launch any PostgreSQL administrative front-end to start using MobilityDB. Two traditional ones are the command-
line tool psql and the graphical tool pgAdmin. We can launch psql as follows.

docker exec -t -i mobilitydb psql -h localhost -p 5432 -d mobilitydb -U docker

In the above command

• docker exec -t -i mobilitydb psql tells Docker to allocate a pseudo-TTY, to keep STDIN open, and to execute
in the container mobilitydb the command psql.

• -h localhost -p 5432 -d mobilitydb -U docker tells psql, respectively, the database server host, the server
port, the database name, and the user name.

Note that you will be prompted to provide the password, which is also docker.

In order to launch pgAdmin, there are two options to create a connection. The first option is to set the host to the localhost
(127.0.0.1), and the port to the mapped one on the host, as per the docker run command. In this example the port is 25432.
Now we can launch pgAdmin and establish a new connection to the docker container. This is done as shown in Figure 1.1.

The second option is to know the IP address used by docker container with the following command.

docker-machine ip
-- 192.168.99.101

Notice that the address obtained in your computer may be different from the one above. Now we can launch pgAdmin and
establish a new connection to the docker container. This is done as shown in Figure 1.1. The second option is to set the host to
the localhost (127.0.0.1), and the port to the mapped one on the host, as per the docker run command. In this example the
port would be 25432.

Now you can use pgAdmin to query the mobilitydb database, as will be further explained in the following sections. Here are few
more docker commands that you will eventually need:

docker stop "mobilitydb"
docker start "mobilitydb"
docker rm "mobilitydb"

The above commands

• docker stop shuts down the docker container. You need to issue this command, for example, if you need to re-start the
host.

• docker start launches back the docker container. You need to issue this command, for example, after re-starting the host.

• docker rm removes/deletes docker container. You need to issue this command, for example, if you need to docker pull
a more recent MobilityDB image. If the databases are stored in a docker volume as explained above, it will still be
available after downloading and running the new image.

BerlinMOD Benchmark on MobilityDB 3 / 60

Figure 1.1: Configuration of a connection to the docker image in pgAdmin.

BerlinMOD Benchmark on MobilityDB 4 / 60

1.2 Loading the Data

The ZIP file with the data for this tutorial contains a set of CSV files as follows:

• instants.csv with fields InstantId and Instant contains timestamps used for queries.

• licences.csv with fields LicenceId, Licence and VehId contains vehicle licences used for queries.

• periods.csv with fields PeriodId, Begin, and End contains periods used for the queries.

• points.csv with fields PointId, PosX, and PosY contains points used for queries.

• regions.csv with fields RegionId, PointNo, PosX, and PosY and Yend contains the polygons used for queries.

• trips.csv with fields TripId, VehId, PosX, PosY, and Instant contains vehicles movements and pauses.

• vehicles.csv with fields VehId, Licence, Type, and Model contains the vehicle descriptions.

We decompress the file with the data into a directory. This can be done using the command.

unzip berlinmod_data.zip

We suppose in the following that the directory used is as follows /home/mobilitydb/data/.

In the following, we can use the mobilitydb database provided in the container. This database has already installed the
MobilityDB extension. Alternatively, you may use another database. In that case, you can install the MobilityDB extension in
your database by using the following command.

CREATE EXTENSION MobilityDB CASCADE;

By using CASCADE we load the required PostGIS extension prior to loading MobilityDB.

We create the tables to be loaded with the data in the CSV files as follows.

CREATE TABLE Instants (
InstantId integer PRIMARY KEY,
Instant timestamptz NOT NULL
);

CREATE TABLE Periods (
PeriodId integer PRIMARY KEY,
Tstart TimestampTz NOT NULL,
Tend TimestampTz NOT NULL,
Period period
);

CREATE TABLE Points (
PointId integer PRIMARY KEY,
PosX double precision NOT NULL,
PosY double precision NOT NULL,
Geom Geometry(Point)
);

CREATE TABLE RegionsInput (
RegionId integer,
PointNo integer,
XPos double precision NOT NULL,
YPos double precision NOT NULL,
PRIMARY KEY (RegionId, PointNo)
);

CREATE TABLE Regions (

BerlinMOD Benchmark on MobilityDB 5 / 60

RegionId integer PRIMARY KEY,
Geom Geometry(Polygon) NOT NULL
);

CREATE TABLE Vehicles (
VehId integer PRIMARY KEY,
Licence text NOT NULL,
Type text NOT NULL,
Model text NOT NULL
);

CREATE TABLE Licences (
LicenceId integer PRIMARY KEY,
Licence text NOT NULL,
VehId integer NOT NULL REFERENCES Vehicles(VehId)
);

CREATE TABLE TripsInput (
TripId integer NOT NULL,
VehId integer NOT NULL REFERENCES Vehicles(VehId),
PosX float NOT NULL,
PosY float NOT NULL,
T timestamptz NOT NULL,
PRIMARY KEY (TripId, T)
);

CREATE TABLE Trips (
TripId integer PRIMARY KEY,
VehId integer NOT NULL REFERENCES Vehicles(VehId),
Trip tgeompoint NOT NULL
);

We created one table for each CSV file. In addition, we created a table Regions in order to assemble all points composing the
polygon of a region into a single geometry and a table Trips in order to assemble all instants composing a trip into a single
temporal point.

We can load the CSV files into the corresponding tables as follows.

COPY Instants(InstantId, Instant) FROM '/home/mobilitydb/data/instants.csv'
DELIMITER ',' CSV HEADER;

COPY Periods(PeriodId, Tstart, Tend) FROM '/home/mobilitydb/data/periods.csv'
DELIMITER ',' CSV HEADER;

UPDATE Periods
SET Period = period(Tstart, Tend);
COPY Points(PointId, PosX, PosY) FROM '/home/mobilitydb/data/points.csv'

DELIMITER ',' CSV HEADER;
UPDATE Points
SET Geom = ST_Transform(ST_SetSRID(ST_MakePoint(PosX, PosY), 4326), 5676);
COPY RegionsInput(RegionId, PointId, XPos, YPos) FROM

'/home/mobilitydb/data/regions.csv' DELIMITER ',' CSV HEADER;
COPY Vehicles(VehId, Licence, Type, Model) FROM '/home/mobilitydb/data/vehicles.csv'

DELIMITER ',' CSV HEADER;
COPY Licences(LicenceId, Licence, VehId) FROM '/home/mobilitydb/data/licences.csv'

DELIMITER ',' CSV HEADER;
COPY TripsInput(TripId, VehId, PosX, PosY, T) FROM '/home/mobilitydb/data/trips.csv'

DELIMITER ',' CSV HEADER;

The following query is used to load table Regions from the data in table RegionsInput.

INSERT INTO Regions(RegionId, Geom)
SELECT RegionId, ST_MakePolygon(ST_MakeLine(array_agg(

ST_Transform(ST_SetSRID(ST_MakePoint(PosX, PosY), 4326), 5676) ORDER BY PointNo)))
FROM RegionsInput

BerlinMOD Benchmark on MobilityDB 6 / 60

GROUP BY RegionId;

There are many nested functions, so reading from the innermost:

• Function ST_MakePoint construct a point from the PosX and PosY values.

• Function ST_SetSRID sets the SRID of the point to 4326, that is, to the standard WGS84 GPS coordinates.

• Function ST_Transform transforms the spherical GPS coordinates to plannar coordinates fitted for Belgium.

• Function array_agg collects in an array all points of a region (as specified by the GROUP BY clause) and sort them by
PointNo (as specified by the ORDER BY clause).

• Function ST_MakeLine make a linestring from the array of all points in a region.

• Function ST_MakePolygon make a polygon for the region from a linestring.

The following query is used to load table Trips from the data in table TripsInput.

INSERT INTO Trips(TripId, VehId, Trip)
SELECT TripId, VehId, tgeompoint_seq(array_agg(tgeompoint_inst(

ST_Transform(ST_SetSRID(ST_MakePoint(PosX, PosY), 4326), 5676), T) ORDER BY T))
FROM TripsInput
GROUP BY VehId, TripId;

There are many nested functions, so reading from the innermost:

• Function ST_MakePoint construct a point from the PosX and PosY values.

• Function ST_SetSRID sets the SRID of the point to 4326.

• Function ST_Transform transforms the spherical coordinates to plannar coordinates with SRID 5676.

• Function tgeompoint_inst gets the point and the time values to create a temporal point of instant duration.

• Function array_agg collects in an array all temporal instant points of a given vehicle and a given trip (as specified by the
GROUP BY clause) and sort them by time (as specified by the ORDER BY clause).

• Function tgeompoint_seq gets the array of temporal points and construct a temporal sequence point.

Finally, we create indexes on traditional, spatial, temporal or spatiotemporal attributes as well as views to select a subset of the
rows from the corresponding tables. This can be done as follows.

CREATE INDEX Instants_Instant_Idx ON Instants USING btree(Instant);
CREATE INDEX Periods_Period_Idx ON Periods USING gist(Period);
CREATE INDEX Points_Geom_Idx ON Points USING gist(Geom);
CREATE INDEX Regions_Geom_Idx ON Regions USING gist(Geom);
CREATE INDEX Trips_VehId_Idx ON Trips USING btree(VehId);
CREATE INDEX Trips_Trip_gist_Idx ON Trips USING gist(trip);

CREATE VIEW Instants1 AS SELECT * FROM Instants LIMIT 10;
CREATE VIEW Periods1 AS SELECT * FROM Periods LIMIT 10;
CREATE VIEW Points1 AS SELECT * FROM Points LIMIT 10;
CREATE VIEW Regions1 AS SELECT * FROM Regions LIMIT 10;
CREATE VIEW Vehicles1 AS SELECT * FROM Vehicles LIMIT 10;
CREATE VIEW Trips1 AS SELECT * FROM Trips LIMIT 100;

BerlinMOD Benchmark on MobilityDB 7 / 60

1.3 Loading the Data in Partitioned Tables

PostgreSQL provides partitioning mechanisms so that large tables can be split in smaller physical tables. This may result in
increased performance when querying and manipulating large tables. We will split the Trips table given in the previous section
using list partitioning, where each partitition will contain all the trips that start at a particular date. For doing this, we use the
procedure given next for automatically creating the partitions according to a date range.

CREATE OR REPLACE FUNCTION create_partitions_by_date(TableName TEXT, StartDate DATE,
EndDate DATE)

RETURNS void AS $$
DECLARE

d DATE;
PartitionName TEXT;

BEGIN
IF NOT EXISTS (
SELECT 1
FROM information_schema.tables
WHERE table_name = lower(TableName))

THEN
RAISE EXCEPTION 'Table % does not exist', TableName;

END IF;
IF StartDate >= EndDate THEN
RAISE EXCEPTION 'The start date % must be before the end date %', StartDate, EndDate;

END IF;
d = StartDate;
WHILE d <= EndDate
LOOP
PartitionName = TableName || '_' || to_char(d, 'YYYY_MM_DD');
IF NOT EXISTS (

SELECT 1
FROM information_schema.tables
WHERE table_name = lower(PartitionName))

THEN
EXECUTE format('CREATE TABLE %s PARTITION OF %s FOR VALUES IN (''%s'');',

PartitionName, TableName, to_char(d, 'YYYY-MM-DD'));
RAISE NOTICE 'Partition % has been created', PartitionName;

END IF;
d = d + '1 day'::interval;

END LOOP;
RETURN;

END
$$ LANGUAGE plpgsql;

In order to partition table Trips by date we need to add an addition column TripDate to table TripsInput.

ALTER TABLE TripsInput ADD COLUMN TripDate DATE;
UPDATE TripsInput T1
SET TripDate = T2.TripDate
FROM (SELECT DISTINCT TripId, date_trunc('day', MIN(T) OVER (PARTITION BY TripId))
AS TripDate FROM TripsInput) T2
WHERE T1.TripId = T2.TripId;

Notice that the UPDATE statement above takes into account the fact that a trip may finish at a day later than the starting day.

The following statements create table Trips partitioned by date and the associated partitions.

BerlinMOD Benchmark on MobilityDB 8 / 60

DROP TABLE Trips CASCADE;
CREATE TABLE Trips (

TripId integer,
TripDate date,
VehId integer NOT NULL REFERENCES Vehicles(VehId),
Trip tgeompoint NOT NULL,
Traj geometry,
PRIMARY KEY (TripId, TripDate)

) PARTITION BY LIST(TripDate);

SELECT create_partitions_by_date('Trips', (SELECT MIN(TripDate) FROM TripsInput),
(SELECT MAX(TripDate) FROM TripsInput));

To see the partitions that have been created automatically we can use the following statement.

SELECT I.inhrelid::regclass AS child
FROM pg_inherits I
WHERE i.inhparent = 'trips'::regclass;

In our case this would result in the following output.

trips_2020_06_01
trips_2020_06_02
trips_2020_06_03
trips_2020_06_04
trips_2020_06_05

We modify the query that loads table Trips from the data in table TripsInput as follows.

INSERT INTO Trips
SELECT TripId, TripDate, VehId, tgeompoint_seq(array_agg(tgeompoint_inst(

ST_Transform(ST_SetSRID(ST_MakePoint(PosX,PosY), 4326), 5676), T) ORDER BY T))
FROM TripsInput
GROUP BY TripId, TripDate, VehId;

We can see how many trips are in each partition of the TripsInput as follows.

SELECT COUNT(*) FROM trips_2020_06_01;
-- 423
SELECT COUNT(*) FROM trips_2020_06_02;
-- 411
SELECT COUNT(*) FROM trips_2020_06_03;
-- 415
SELECT COUNT(*) FROM trips_2020_06_04;
-- 419
SELECT COUNT(*) FROM trips_2020_06_05;
-- 4

Then, we can define the indexes and the views on the table Trips as shown in the previous section.

An important advantange of the partitioning mechanism in PostgreSQL is that the constraints and the indexes defined on the
Trips table are propagated to the partitions as shown next.

BerlinMOD Benchmark on MobilityDB 9 / 60

INSERT INTO Trips VALUES (1, '2020-06-01', 10,
'[POINT(2389629.8979609837 5626986.483650829)@2020-06-02 08:00]');

-- ERROR: duplicate key value violates unique constraint "trips_2020_06_01_pkey"
-- DETAIL: Key (tripid, tripdate)=(1, 2020-06-01) already exists.

Similarly, queries on the Trips table are propagated to the partitions as shown next.

EXPLAIN SELECT COUNT(*) FROM Trips WHERE Trip && period '[2020-06-02, 2020-06-03)';

If there is no index defined on the Trip column, the execution plan of the query is as follows:

Aggregate (cost=63.64..63.65 rows=1 width=8)
-> Append (cost=0.00..63.62 rows=5 width=0)

-> Seq Scan on trips_2020_06_01 trips_1 (cost=0.00..11.29 rows=1 width=0)
Filter: (trip && '[2020-06-02 00:00:00+02, 2020-06-03 00:00:00+02)'::period)

-> Seq Scan on trips_2020_06_02 trips_2 (cost=0.00..11.14 rows=1 width=0)
Filter: (trip && '[2020-06-02 00:00:00+02, 2020-06-03 00:00:00+02)'::period)

-> Seq Scan on trips_2020_06_03 trips_3 (cost=0.00..11.19 rows=1 width=0)
Filter: (trip && '[2020-06-02 00:00:00+02, 2020-06-03 00:00:00+02)'::period)

-> Seq Scan on trips_2020_06_04 trips_4 (cost=0.00..10.24 rows=1 width=0)
Filter: (trip && '[2020-06-02 00:00:00+02, 2020-06-03 00:00:00+02)'::period)

-> Seq Scan on trips_2020_06_05 trips_5 (cost=0.00..19.75 rows=1 width=0)
Filter: (trip && '[2020-06-02 00:00:00+02, 2020-06-03 00:00:00+02)'::period)

After defining an index on the Trip column as follows

CREATE INDEX Trips_Trip_gist_Idx ON Trips USING gist (Trip);

the execution plan of the query is as follows

Aggregate (cost=33.73..33.74 rows=1 width=8)
-> Append (cost=0.14..33.71 rows=5 width=0)

-> Index Scan using trips_2020_06_01_trip_idx on trips_2020_06_01 trips_1
(cost=0.14..8.16 rows=1 width=0)

Index Cond: (trip && '[2020-06-02 00:00:00+02, 2020-06-03 00:00:00+02)'::period)
-> Index Scan using trips_2020_06_02_trip_idx on trips_2020_06_02 trips_2

(cost=0.14..8.16 rows=1 width=0)
Index Cond: (trip && '[2020-06-02 00:00:00+02, 2020-06-03 00:00:00+02)'::period)

-> Index Scan using trips_2020_06_03_trip_idx on trips_2020_06_03 trips_3
(cost=0.14..8.16 rows=1 width=0)

Index Cond: (trip && '[2020-06-02 00:00:00+02, 2020-06-03 00:00:00+02)'::period)
-> Index Scan using trips_2020_06_04_trip_idx on trips_2020_06_04 trips_4

(cost=0.14..8.16 rows=1 width=0)
Index Cond: (trip && '[2020-06-02 00:00:00+02, 2020-06-03 00:00:00+02)'::period)

-> Seq Scan on trips_2020_06_05 trips_5 (cost=0.00..1.05 rows=1 width=0)
Filter: (trip && '[2020-06-02 00:00:00+02, 2020-06-03 00:00:00+02)'::period)

1.4 Exploring the Data

In order to visualize the data with traditional tools such as QGIS we add to table Trip a column Traj of type geometry
containing the trajectory of the trips.

https://qgis.org/

BerlinMOD Benchmark on MobilityDB 10 / 60

ALTER TABLE Trips ADD COLUMN traj geometry;
UPDATE Trips
SET Traj = trajectory(Trip);

The visualization of the trajectories in QGIS is given in Figure 1.2. In the figure red lines correspond to the trajectories of moving
vehicles, while yellow points correspond to the position of stationary vehicles. In order to know the total number of trips as well
as the number of moving and stationary trips we can issue the following queries.

SELECT count(*) FROM Trips;
-- 1672
SELECT count(*) FROM Trips WHERE GeometryType(Traj) = 'POINT';
-- 0
SELECT count(*) FROM Trips WHERE GeometryType(Traj) = 'LINESTRING';
-- 1672

We can also determine the spatiotemporal extent of the data using the following query.

SELECT extent(Trip) from Trips;
-- SRID=3857;STBOX XT(((469715.0960907607,6577078.768286072),
-- (500997.56505993055,6607214.0038881665)),
-- [2020-06-01 08:01:16.984+02, 2020-06-05 01:40:04.281127+02])

Figure 1.2: Visualization of the trajectories of the trips in QGIS.

We continue investigating the data set by computing the maximum number of concurrent trips over the whole period

SELECT maxValue(tcount(Trip)) FROM Trips;
-- 51

BerlinMOD Benchmark on MobilityDB 11 / 60

the average sampling rate

SELECT AVG(duration(Trip)/numInstants(Trip)) FROM Trips;
-- 00:00:01.370537

and the total travelled distance in kilometers of all trips:

SELECT SUM(length(Trip)) / 1e3 as TotalLengthKm FROM Trips;
-- 24209.259034796323

Now we want to know the average duration of a trip.

SELECT AVG(duration(Trip)) FROM Trips;
-- 00:25:09.065361

This following query tells us the length in kilometers and the duration of each trip.

SELECT tripId, length(Trip) / 1e3 AS lengthKm, duration(Trip) AS duration
FROM Trips ORDER BY duration;

The following query produces a histogram of trip length.

WITH buckets (bucketNo, bucketRange) AS (
SELECT 1, floatspan '[0, 1)' UNION
SELECT 2, floatspan '[1, 2)' UNION
SELECT 3, floatspan '[2, 5)' UNION
SELECT 4, floatspan '[5, 10)' UNION
SELECT 5, floatspan '[10, 50)' UNION
SELECT 6, floatspan '[50, 100)'),

histogram AS (
SELECT bucketNo, bucketRange, count(TripId) as freq
FROM buckets left outer join trips on length(trip) / 1e3 <@ bucketRange
GROUP BY bucketNo, bucketRange
ORDER BY bucketNo, bucketRange)

SELECT bucketNo, bucketRange, freq,
repeat('n', (freq::float / max(freq) OVER () * 30)::int) AS bar

FROM histogram;

The result of the above query is given next.

bucketno | bucketrange | freq | bar
----------+-------------+------+--------------------------------

1 | [0, 1) | 41 | n

2 | [1, 2) | 91 | nnn

3 | [2, 5) | 329 | nnnnnnnnnnn

4 | [5, 10) | 294 | nnnnnnnnnn

5 | [10, 50) | 909 | nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

6 | [50, 100) | 8 |

BerlinMOD Benchmark on MobilityDB 12 / 60

1.5 Querying the Data

We discuss next four categories of queries: range queries, distance queries, temporal aggregate queries, and nearest-neighbor
queries.

1.5.1 Range Queries

The queries in this category restrict Trips with respect to a spatial, temporal, or spatio-temporal point or range. In the examples,
the spatial points and ranges are given, respectively, in tables Points and Regions, while temporal points and ranges are
given, respectively, in tables Instants and Periods.

1. List the vehicles that have passed at a region from Regions.

SELECT DISTINCT R.RegionId, T.VehId
FROM Trips T, Regions R
WHERE ST_Intersects(trajectory(T.Trip), R.Geom)
ORDER BY R.RegionId, T.VehId;

This is a spatial range query. The query verifies that the trajectory of the vehicle intersects the region. PostGIS performs an
implicit bounding box comparison trajectory(T.Trip) && R.Geom using the spatial index on table Regions
when executing the predicate ST_Intersects.

2. List the vehicles that were within a region from Regions during a period from Periods.

SELECT R.RegionId, P.PeriodId, T.VehId
FROM Trips T, Regions R, Periods P
WHERE T.Trip && stbox(R.Geom, P.Period) AND
intersects(atPeriod(T.Trip, P.Period), R.Geom)

ORDER BY R.RegionId, P.PeriodId, T.VehId;

This is a spatio-temporal range query. The query performs a bounding box comparison with the && operator using the
spatio-temporal index on table Trips. After that, the query verifies that the location of the vehicle during the period
intersects the region. Notice that the predicate _intersects is used instead of intersects to avoid an implicit
index test with the bounding box comparison atPeriod(Trip, P.Period) && R.Geom is performed using the
spatio-temporal index.

3. List the pairs of vehicles that were both located within a region from Regions during a period from Periods.

SELECT DISTINCT T1.VehId AS VehId1, T2.VehId AS VehId2, R.RegionId, P.PeriodId
FROM Trips T1, Trips T2, Regions R, Periods P
WHERE T1.VehId < T2.VehId AND T1.Trip && stbox(R.Geom, P.Period) AND
T2.Trip && stbox(R.Geom, P.Period) AND
intersects(atPeriod(T1.Trip, P.Period), R.Geom) AND
intersects(atPeriod(T2.Trip, P.Period), R.Geom)

ORDER BY T1.VehId, T2.VehId, R.RegionId, P.PeriodId;

This is a spatio-temporal range join query. The query selects two trips of different vehicles and performs bounding box
comparisons of each trip with a region and a period using the spatio-temporal index of the Trips table. The query then
verifies that both vehicles were located within the region during the period.

4. List the first time at which a vehicle visited a point in Points.

BerlinMOD Benchmark on MobilityDB 13 / 60

SELECT T.VehId, P.PointId, MIN(startTimestamp(atValue(T.Trip,P.Geom))) AS Instant
FROM Trips T, Points P
WHERE ST_Contains(trajectory(T.Trip), P.Geom)
GROUP BY T.VehId, P.PointId;

The query selects a trip and a point and verifies that the vehicle passed by the point by testing that the trajectory of the
trip contains the point. Notice that PostGIS will perform the bounding box containment trajectory(T.Trip) ~
P.Geom using the spatial index on table Points before executing ST_Contains. Then, the query projects the trip to
the point with the atValue function, get the first timestamp of the projected trip with the startTimestamp function,
and applies the traditional MIN aggregate function for all trips of the vehicle and the point.

1.5.2 Temporal Aggregate Queries

There are three common types of temporal aggregate queries.

• Instant temporal aggregate queries in which, from a conceptual perspective, the traditional aggregate function is applied at each
instant.

• Window temporal aggregate queries (also known as cumulative queries), which, given a time interval w, compute the value of
the aggregate at a time instant t from the values during the time period [t-w, t].

• Span temporal aggregate queries, which, first, split the time line into predefined intervals independently of the target data, and
then, for each of these intervals, aggregate the data that overlap the interval.

5. Compute how many vehicles were active at each period in Periods.

SELECT P.PeriodID, COUNT(*), TCOUNT(atPeriod(T.Trip, P.Period))
FROM Trips T, Periods P
WHERE T.Trip && P.Period
GROUP BY P.PeriodID
ORDER BY P.PeriodID;

This an instant temporal aggregate query. For each period, the query projects the trips to the given period and applies the
temporal count to the projected trips. The condition in the WHERE clause is used for filtering the trips with the spatio-
temporal index on table Trips.

6. For each region in Regions, give the window temporal count of trips with a 10-minute interval.

SELECT R.RegionID, WCOUNT(atGeometry(T.Trip, R.Geom), interval '10 min')
FROM Trips T, Regions R
WHERE T.Trip && R.Geom
GROUP BY R.RegionID
HAVING WCOUNT(atGeometry(T.Trip, R.Geom), interval '10 min') IS NOT NULL
ORDER BY R.RegionID;

This is a window temporal aggregate query. Suppose that we are computing pollution levels by region. Since the effect of
a vehicle passing at a location lasts some time interval, this is a typical case for window aggregates. For each region, the
query computes the spatial projection of the trips to the given region and apply the window temporal count to the projected
trips. The condition in the WHERE clause is used for filtering the trips with the spatio-temporal index. The condition in the
HAVING clause is used for removing regions that do not intersect with any trip.

7. Count the number of trips that were active during each hour in May 29, 2007.

BerlinMOD Benchmark on MobilityDB 14 / 60

WITH TimeSplit(Period) AS (
SELECT period(H, H + interval '1 hour')
FROM generate_series(timestamptz '2007-05-29 00:00:00',

timestamptz '2007-05-29 23:00:00', interval '1 hour') AS H)
SELECT Period, COUNT(*)
FROM TimeSplit S, Trips T
WHERE S.Period && T.Trip AND atPeriod(Trip, Period) IS NOT NULL
GROUP BY S.Period
ORDER BY S.Period;

This is a span temporal aggregate query. The query defines the intervals to consider in the TimeSplit temporary table.
For each of these intervals, the main query applies the traditional count function for counting the trips that overlap the
interval.

1.5.3 Distance Queries

The queries in this category deal with either the distance travelled by a single object or the distance between two objects. The
complexity of the latter queries depend, on the one hand, on whether the reference objects are static or moving, and on the other,
on whether the operation required is either the minimum distance ever or the temporal distance computed at each instant.

8. List the overall traveled distances of the vehicles during the periods from Periods.

SELECT T.VehId, P.PeriodId, P.Period,
SUM(length(atPeriod(T.Trip, P.Period))) AS Distance

FROM Trips T, Periods P
WHERE T.Trip && P.Period
GROUP BY T.VehId, P.PeriodId, P.Period
ORDER BY T.VehId, P.PeriodId;

The query performs a bounding box comparison with the && operator using the spatio-temporal index on the Trips table.
It then projects the trip to the period, computes the length of the projected trip, and sum the lengths of all the trips of the
same vehicle during the period.

9. List the minimum distance ever between each vehicle and each point from Points.

SELECT T.VehId, P.PointId, MIN(trajectory(T.Trip) <-> P.Geom) AS MinDistance
FROM Trips T, Points P
GROUP BY T.VehId, P.PointId
ORDER BY T.VehId, P.PointId;

The query projects the trip to the spatial dimension with the trajectory function and computes the traditional distance
between the trajectory of the trip and the point. The traditional minimum function is then applied for computing the
minimum distance between all trips of the vehicle and the point.

10. List the minimum temporal distance between each pair of vehicles.

SELECT T1.VehId AS Car1Id, T2.VehId AS Car2Id, tmin(T1.Trip <-> T2.Trip) AS MinDistance
FROM Trips T1, Trips T2
WHERE T1.VehId < T2.VehId AND period(T1.Trip) && period(T2.Trip)
GROUP BY T1.VehId, T2.VehId
ORDER BY T1.VehId, T2.VehId;

The query selects two trips T1 and T2 from different vehicles that were both traveling during a common period of time,
computes the temporal distance between the trips, and then computes the temporal minimum distance between all trips
of the two vehicles. The query uses the spatio-temporal index to filter the pairs of trips that were both traveling during a
common period of time.

BerlinMOD Benchmark on MobilityDB 15 / 60

11. List the nearest approach time, distance, and shortest line between each pair of trips.

SELECT T1.VehId AS Car1Id, T1.TripId AS Trip1Id, T2.VehId AS Car2Id,
T2.TripId AS Trip2Id, period(NearestApproachInstant(T1.Trip, T2.Trip)) AS Time,
NearestApproachDistance(T1.Trip, T2.Trip) AS Distance,
ShortestLine(T1.Trip, T2.Trip) AS Line

FROM Trips T1, Trips T2
WHERE T1.VehId < T2.VehId AND period(T1.Trip) && period(T2.Trip)
ORDER BY T1.VehId, T1.TripId, T2.VehId, T2.TripId;

This query shows similar functionality as that provided by the PostGIS functions ST_ClosestPointOfApproach
and ST_DistanceCPA. The query selects two trips T1 and T2 from different vehicles that were both traveling during a
common period of time and computes the required results.

12. List when and where a pairs of vehicles have been at 10 m or less from each other.

SELECT T1.VehId AS VehId1, T2.VehId AS VehId2, atPeriodSet(T1.Trip,
getTime(tdwithin(T1.Trip, T2.Trip, 10.0, TRUE))) AS Position

FROM Trips T1, Trips T2
WHERE T1.VehId < T2.VehId AND T1.Trip && expandSpatial(T2.Trip, 10) AND
tdwithin(T1.Trip, T2.Trip, 10.0, TRUE) IS NOT NULL

ORDER BY T1.VehId, T2.VehId, Position;

The query performs for each pair of trips T1 and T2 of different vehicles a bounding box comparison with the &&
operator using the spatio-temporal index on the Trips table, where the bounding box of T2 is expanded by 10 m.
Then, the period expression computes the periods during which the vehicles were within 10 m. from each other and
the atPeriodSet function projects the trips to those periods. Notice that the expression tdwithin(T1.Trip,
T2.Trip, 10.0) is conceptually equivalent to dwithin(T1.Trip, T2.Trip) #<= 10.0. However, in this
case the spatio-temporal index cannot be used for filtering values.

1.5.4 Nearest-Neighbor Queries

There are three common types of nearest-neighbor queries in spatial databases.

• k-nearest-neighbor (kNN) queries find the k nearest points to a given point.

• Reverse k-nearest-neighbor (RkNN) queries find the points that have a given point among their k nearest-neighbors.

• Given two sets of points P and Q, aggregate nearest-neighbor (ANN) queries find the points from P that have minimum
aggregated distance to all points from Q.

The above types of queries are generalized to temporal points. However, the complexity of these queries depend on whether the
reference object and the candidate objects are static or moving. In the examples that follow we only consider the nontemporal
version of the nearest-neighbor queries, that is, the one in which the calculation is performed on the projection of temporal points
on the spatial dimension. The temporal version of the nearest-neighbor queries remains to be done.

13. For each trip from Trips, list the three points from Points that have been closest to that vehicle.

WITH TripsTraj AS (
SELECT TripId, VehId, trajectory(Trip) AS Trajectory FROM Trips)

SELECT T.VehId, P1.PointId, P1.Distance
FROM TripsTraj T CROSS JOIN LATERAL (
SELECT P.PointId, T.Trajectory <-> P.Geom AS Distance
FROM Points P
ORDER BY Distance LIMIT 3) AS P1

ORDER BY T.TripId, T.VehId, P1.Distance;

BerlinMOD Benchmark on MobilityDB 16 / 60

This is a nearest-neighbor query with moving reference objects and static candidate objects. The query above uses Post-
greSQL’s lateral join, which intuitively iterates over each row in a result set and evaluates a subquery using that row as a
parameter. The query starts by computing the trajectory of the trips in the temporary table TripsTraj. Then, given a
trip T in the outer query, the subquery computes the traditional distance between the trajectory of T and each point P. The
ORDER BY and LIMIT clauses in the inner query select the three closest points. PostGIS will use the spatial index on the
Points table for selecting the three closest points.

14. For each trip from Trips, list the three vehicles that are closest to that vehicle

SELECT T1.VehId AS VehId1, C2.VehId AS VehId2, C2.Distance
FROM Trips T1 CROSS JOIN LATERAL (
SELECT T2.VehId, minValue(T1.Trip <-> T2.Trip) AS Distance
FROM Trips T2
WHERE T1.VehId < T2.VehId AND period(T1.Trip) && period(T2.Trip)
ORDER BY Distance LIMIT 3) AS C2

ORDER BY T1.VehId, C2.VehId;

This is a nearest-neighbor query where both the reference and the candidate objects are moving. Therefore, it is not
possible to proceed as in the previous query to first project the moving points to the spatial dimension and then compute
the traditional distance. Given a trip T1 in the outer query, the subquery computes the temporal distance between T1 and
a trip T2 of another vehicle different from the vehicle from T1 and then computes the minimum value in the temporal
distance. Finally, the ORDER BY and LIMIT clauses in the inner query select the three closest vehicles.

15. For each trip from Trips, list the points from Points that have that vehicle among their three nearest neighbors.

WITH TripsTraj AS (
SELECT TripId, VehId, trajectory(Trip) AS Trajectory FROM Trips),

PointTrips AS (
SELECT P.PointId, T2.VehId, T2.TripId, T2.Distance
FROM Points P CROSS JOIN LATERAL (

SELECT T1.VehId, T1.TripId, P.Geom <-> T1.Trajectory AS Distance
FROM TripsTraj T1
ORDER BY Distance LIMIT 3) AS T2)

SELECT T.VehId, T.TripId, P.PointId, PT.Distance
FROM Trips T CROSS JOIN Points P JOIN PointTrips PT
ON T.VehId = PT.VehId AND T.TripId = PT.TripId AND P.PointId = PT.PointId

ORDER BY T.VehId, T.TripId, P.PointId;

This is a reverse nearest-neighbor query with moving reference objects and static candidate objects. The query starts by
computing the corresponding nearest-neighbor query in the temporary table PointTrips as it is done in Query 13. Then,
in the main query it verifies for each trip T and point P that both belong to the PointTrips table.

16. For each trip from Trips, list the vehicles having the vehicle of the trip among the three nearest neighbors.

WITH TripDistances AS (
SELECT T1.VehId AS VehId1, T1.TripId AS TripId1, T3.VehId AS VehId2,

T3.TripId AS TripId2, T3.Distance
FROM Trips T1 CROSS JOIN LATERAL (

SELECT T2.VehId, T2.TripId, minValue(T1.Trip <-> T2.Trip) AS Distance
FROM Trips T2
WHERE T1.VehId < T2.VehId AND period(T1.Trip) && period(T2.Trip)
ORDER BY Distance LIMIT 3) AS T3)

SELECT T1.VehId, T1.TripId, T2.VehId, T2.TripId, TD.Distance
FROM Trips T1 JOIN Trips T2 ON T1.VehId < T2.VehId
JOIN TripDistances TD ON T1.VehId = TD.VehId1 AND T1.TripId = TD.TripId1 AND
T2.VehId = TD.VehId2 AND T2.TripId = TD.TripId2

ORDER BY T1.VehId, T1.TripId, T2.VehId, T2.TripId;

BerlinMOD Benchmark on MobilityDB 17 / 60

This is a reverse nearest-neighbor query where both the reference and the candidate objects are moving. The query starts
by computing the corresponding nearest-neighbor query in the temporary table TripDistances as it is done in Query
14. Then, in the main query it verifies for each pair of trips T1 and T2 that both belong to the TripDistances table.

17. For each group of ten disjoint vehicles, list the point(s) from Points, having the minimum aggregated distance from the
given group of ten vehicles during the given period.

WITH Groups AS (
SELECT ((ROW_NUMBER() OVER (ORDER BY V.VehId))-1)/10 + 1 AS GroupId, V.VehId
FROM Vehicles V),

SumDistances AS (
SELECT G.GroupId, P.PointId,

SUM(ST_Distance(trajectory(T.Trip), P.Geom)) AS SumDist
FROM Groups G, Points P, Trips T
WHERE T.VehId = G.VehId
GROUP BY G.GroupId, P.PointId)

SELECT S1.GroupId, S1.PointId, S1.SumDist
FROM SumDistances S1
WHERE S1.SumDist <= ALL (
SELECT SumDist
FROM SumDistances S2
WHERE S1.GroupId = S2.GroupId)

ORDER BY S1.GroupId, S1.PointId;

This is an aggregate nearest-neighbor query. The temporary table Groups splits the vehicles in groups where the
GroupId column takes the values from 1 to total number of groups. The temporary table SumDistances computes for
each group G and point P the sum of the distances between a trip of a vehicle in the group and the point. The main query
then selects for each group in table SumDistances the points(s) that have the minimum aggregated distance.

BerlinMOD Benchmark on MobilityDB 18 / 60

Chapter 2

Generating Realistic Trajectory Datasets

2.1 Introduction

Do you need an arbitrarily large trajectory dataset to tests your ideas? This chapter illustrates how to generate car trips in a city.
It implements the BerlinMOD benchmark data generator that is described in:

Düntgen, C., Behr, T. and Güting, R.H. BerlinMOD: a benchmark for moving object databases. The VLDB Journal
18, 1335 (2009). https://doi.org/10.1007/s00778-009-0142-5

The data generator can be configured by setting the number of simulated cars and the number of simulation days. It models
people trips using their cars to and from work during the week as well as some additional leisure trips at evenings or weekends.
The simulation uses multiple ideas to be close to reality, including:

• The home locations are sampled with respect to the population statistics of the different administrative areas in the city

• Similarly, the work locations are sampled with respect to employment statistics

• Drivers will try to accelerate to the maximum allowed speed of a road

• Random events will force drivers to slow down or even stop to simulate obstacles, traffic lights, etc.

• Drivers will slow down in curves

• Trips between home and work do not include additional destinations

• Leisure trips start and end at home locations and include multiple destinations

The generator is written in PL/pgSQL, so that it will be easy to insert or adapt simulation rules to reflect other scenarios. It uses
MobilityDB types and operations. The generated trajectories are also MobilityDB types. It is controlled by a single parameter,
scale factor, that determines the size of the generated dataset. Additionally, many other parameters can be used to fine-tune the
generation process to reflect various real-world simulation scenarios.

2.2 Contents

This chapter covers the following topics:

• A quick start using the generator

• Understanding the generation process

• Exploring the generated data

https://doi.org/10.1007/s00778-009-0142-5

BerlinMOD Benchmark on MobilityDB 19 / 60

• Customizing the generator to your city

• Tuning the generator parameters

• Modifying the generator by changing the simulation scenario

• Creating a network topology from your own streets layer, to be used for the generator

2.3 Tools and Data

• MobilityDB, hence PostgreSQL and PostGIS. The installation instructions can be found here.

• MobilityDB-BerlinMOD. Get the generator from Github here.

• pgRouting. The installation instructions can be found here. The minimum version required is 3.1.0.

• Download the OSM files for Brussels here. Extract the archive in any folder. In the following we refer to this folder as
generatorHome.

2.4 Quick Start

Running the generator is done in three steps:

Firstly, load the street network. Create a new database brussels, then add the extensions hstore, PostGIS, MobilityDB, and
pgRouting to it.

in a console:
createdb -h localhost -p 5432 -U dbowner brussels
replace localhost with your database host, 5432 with your port,
and dbowner with your database user

psql -h localhost -p 5432 -U dbowner -d brussels -c 'CREATE EXTENSION hstore'
adds the hstore extension needed by osm2pgsql

psql -h localhost -p 5432 -U dbowner -d brussels -c 'CREATE EXTENSION MobilityDB CASCADE'
adds the PostGIS and the MobilityDB extensions to the database

psql -h localhost -p 5432 -U dbowner -d brussels -c 'CREATE EXTENSION pgRouting'
adds the pgRouting extension

For the moment, we will use the OSM map of Brussels. It is given in the data section of this workshop in the two files:
brussels.osm, mapconfig_brussels.xml. In the next sections, we will explain how to use other maps. It has been
downloaded using the Overpass API, hence it is by default in Spherical Mercator (SRID 3857), which is good for calculating
distances. Next load the map and convert it into a routable network topology format suitable for pgRouting.

in a console, go to the generatorHome then:
osm2pgrouting -h localhost -p 5432 -U dbowner -W passwd -f brussels.osm --dbname brussels \
-c mapconfig_brussels.xml

The configuration file mapconfig_brussels.xml tells osm2pgrouting which are the roads that will be selected to build the
road network as well as the speed limits of the different road types. During the conversion, osm2pgrouting transforms the data
into WGS84 (SRID 4326), so we will need later to convert it back to SRID 3857.

Secondly, prepare the base data for the simulation. Now, the street network is ready in the database. The simulation scenario
requires to sample home and work locations. To make it realistic, we want to load a map of the administrative regions of Brussels
(called communes) and feed the simulator with real population and employment statistics in every commune.

https://github.com/MobilityDB/MobilityDB
https://github.com/MobilityDB/MobilityDB-BerlinMOD
https://pgrouting.org/
https://docs.mobilitydb.com/data/brussels_osm.zip

BerlinMOD Benchmark on MobilityDB 20 / 60

Load the administrative regions from the downloaded brussels.osm file, then run the brussels_generatedata.sql
script using your PostgreSQL client, for example:

osm2pgsql -c -H localhost -P 5432 -U dbowner -W -d brussels brussels.osm
loads all layers in the osm file, including the adminstrative regions

psql -h localhost -p 5432 -U dbowner -d brussels -f brussels_preparedata.sql
samples home and work nodes, transforms data to SRID 3857, does further data preparation

psql -h localhost -p 5432 -U dbowner -d brussels -f berlinmod_datagenerator.sql
adds the pgplsql functions of the simulation to the database

Finally, run the generator.

psql -h localhost -p 5432 -U dbowner -d brussels \
-c 'select berlinmod_generate(scaleFactor := 0.005)'
calls the main pgplsql function to start the simulation

If everything is correct, you should see an output like that starts with this:

INFO: --
INFO: Starting the BerlinMOD data generator with scale factor 0.005
INFO: --
INFO: Parameters:
INFO: ------------
INFO: No. of vehicles = 141, No. of days = 4, Start day = 2020-06-01
INFO: Path mode = Fastest Path, Disturb data = f
INFO: Verbosity = minimal, Trip generation = C
...

The generator will take about one minute. It will generate trajectories, according to the default parameters, for 141 cars over 4
days starting from Monday, June 1st 2020. As you may have guessed, it is possible to generate more or less data by respectively
passing a bigger or a smaller scale factor value. If you want to save the messages produced by the generator in a file you can use
a command such as the following one.

psql -h localhost -p 5432 -U dbowner -d brussels -c \
"SELECT berlinmod_generate(scaleFactor := 0.005, messages := 'medium')" 2>&1 | \
tee trace.txt

You can show more messages describing the generation process by setting the optional parameter messages with one of the
values minimal (the default), medium, verbose, or debug. In Section 2.8 are explained all the parameters that can be used
to customize the simulation.

Figure 2.1 shows a visualization of the trips generated in QGIS.

2.5 Exporting the Generated Data

The generated data can be exported, for example, in CSV format using the following queries.

COPY (SELECT InstantId, Instant FROM Instants ORDER BY InstantId)
TO '/home/mobilitydb/data/instants.csv' CSV HEADER DELIMITER ',';

COPY (SELECT LicenceId, Licence, VehId FROM Licences ORDER BY LicenceId)
TO '/home/mobilitydb/data/licences.csv' CSV HEADER DELIMITER ',';

BerlinMOD Benchmark on MobilityDB 21 / 60

Figure 2.1: Visualization of the trips generated. The edges of the network are shown in blue, the edges traversed by the trips are
shown in black, the home nodes in black and the work nodes in red.

BerlinMOD Benchmark on MobilityDB 22 / 60

COPY (SELECT PeriodId, lower(Period) AS StartP, upper(Period) AS EndP FROM Periods ORDER BY ←↩
PeriodId)

TO '/home/mobilitydb/data/periods.csv' CSV HEADER DELIMITER ',';
COPY (SELECT PointId, ST_X(Geom) AS PosX, ST_Y(Geom) AS PosY FROM Points ORDER BY PointId)

TO '/home/mobilitydb/data/points.csv' CSV HEADER DELIMITER ',';
COPY (

SELECT RegionId, (dp).path[2] AS PointID, ST_X((dp).geom) AS PosX,
ST_Y((dp).geom) AS PosY

FROM (SELECT RegionId, ST_DumpPoints(ST_Transform(geom, 4326)) AS dp FROM Regions) AS T
) TO '/home/mobilitydb/data/regions.csv' CSV HEADER DELIMITER ',';

COPY (
WITH Temp1 AS (
SELECT TripId, VehId, unnest(instants(trip)) AS Inst FROM Trips),

Temp2 AS (
SELECT TripId, VehId, ST_Transform(getValue(Inst),4326) AS Point,

getTimestamp(Inst) AS T FROM Temp1)
SELECT TripId, VehId, ST_X(Point) AS PosX, ST_Y(Point) AS PosY, T
FROM Temp2
ORDER BY TripId, VehId, T
) TO '/home/mobilitydb/data/trips.csv' CSV HEADER DELIMITER ',';

COPY (SELECT VehId, Licence, Type, Model FROM SELECT Vehicles ORDER BY VehicleId)
TO '/home/mobilitydb/data/vehicles.csv' CSV HEADER DELIMITER ',';

Actually, the data we used in Chapter 1 was exported by running the BerlinMOD generator with OSM data for Brussels with the
scale factor 0.005.

2.6 Exploring the Generated Data

Now use a PostgreSQL client such as psql or pgAdmin to explore the properties of the generated trajectories. We start by
obtaining some statistics about the number, the total duration, and the total length in Km of the trips.

SELECT COUNT(*), SUM(timespan(Trip)), SUM(length(Trip)) / 1e3
FROM Trips;
-- 1686 "618:34:23.478239" 20546.31859281626

We continue by further analyzing the duration of all the trips

SELECT MIN(timespan(Trip)), MAX(timespan(Trip)), AVG(timespan(Trip))
FROM Trips;
-- "00:00:29.091033" "01:13:21.225514" "00:22:02.365486"

or the duration of the trips by trip type.

SELECT
CASE
WHEN T.source = V.home AND date_part('dow', T.day) BETWEEN 1 AND 5 AND

date_part('hour', startTimestamp(trip)) < 12 THEN 'home_work'
WHEN T.source = V.work AND date_part('dow', T.day) BETWEEN 1 AND 5 AND

date_part('hour', startTimestamp(trip)) > 12 THEN 'work_home'
WHEN date_part('dow', T.day) BETWEEN 1 AND 5 THEN 'leisure_weekday'
ELSE 'leisure_weekend'

END AS TripType, COUNT(*), MIN(timespan(Trip)), MAX(timespan(Trip)), AVG(timespan(Trip))
FROM Trips T, Vehicle V
WHERE T.vehicle = V.id
GROUP BY TripType;

BerlinMOD Benchmark on MobilityDB 23 / 60

-- "leisure_weekday" 558 "00:00:29.091033" "00:57:30.195709" "00:10:59.118318"
-- "work_home" 564 "00:02:04.159342" "01:13:21.225514" "00:27:33.424924"
-- "home_work" 564 "00:01:57.456419" "01:11:44.551344" "00:27:25.145454"

As can be seen, no weekend leisure trips have been generated, which is normal since the data generated covers four days starting
on Monday, June 1st 2020.

We can analyze further the length in Km of the trips as follows.

SELECT MIN(length(Trip)) / 1e3, MAX(length(Trip)) / 1e3, AVG(length(Trip)) / 1e3
FROM Trips;
-- 0.2731400585134866 53.76566616928331 12.200901777206806

As can be seen the longest trip is more than 56 Km long. Let’s visualize one of these long trips.

SELECT vehicle, seq, source, target, round(length(Trip)::numeric / 1e3, 3),
startTimestamp(Trip), timespan(Trip)

FROM Trips
WHERE length(Trip) > 50000 LIMIT 1;
-- 90 1 23078 11985 53.766 "2020-06-01 08:46:55.487+02" "01:10:10.549413"

We can then visualize this trip in PostGIS. As can be seen, in Figure 2.2, the home and the work nodes of the vehicle are located
at two extremities in Brussels.

Figure 2.2: Visualization of a long trip.

We can obtain some statistics about the average speed in Km/h of all the trips as follows.

SELECT MIN(twavg(speed(Trip))) * 3.6, MAX(twavg(speed(Trip))) * 3.6,
AVG(twavg(speed(Trip))) * 3.6

FROM Trips;
-- 14.211962789552468 53.31779380411017 31.32438581663778

BerlinMOD Benchmark on MobilityDB 24 / 60

A possible visualization that we could envision is to use gradients to show how the edges of the network are used by the trips.
We start by determining how many trips traversed each of the edges of the network as follows.

CREATE TABLE HeatMap AS
SELECT E.id, E.geom, count(*)
FROM Edges E, Trips T
WHERE st_intersects(E.geom, T.trajectory)
GROUP BY E.id, E.geom;

This is an expensive query since it took 42 min in my laptop. In order to display unused edges in our visualization we need to
add them to the table with a count of 0.

INSERT INTO HeatMap
SELECT E.id, E.geom, 0 FROM Edges E WHERE E.id NOT IN (

SELECT id FROM HeatMap);

We need some basic statistics about the attribute count in order to define the gradients.

SELECT min(count), max(count), round(avg(count),3), round(stddev(count),3) FROM HeatMap;
-- 0 204 4.856 12.994

Although the maximum value is 204, the average and the standard deviation are, respectively, around 5 and 13.

In order to display in QGIS the edges of the network with a gradient according to the attribute count, we use the following
expression.

ramp_color('RdGy', scale_linear(count, 0, 10, 0, 1))

The scale_linear function transforms the value of the attribute count into a value in [0,1], as stated by the last two
parameters. As stated by the two other parameters 0 and 10, which define the range of values to transform, we decided to assign
a full red color to an edge as soon as there are at least 10 trips that traverse the edge. The ramp_color function states the
gradient to be used for the display, in our case from blue to red. The usage of this expression in QGIS is shown in Figure 2.3 and
the resulting visualization is shown in Figure 2.4.

Another possible visualization is to use gradients to show the speed used by the trips to traverse the edges of the network. As the
maximum speed of edges varies from 20 to 120 Km/h, what would be interesting to compare is the speed of the trips at an edge
with respect to the maximum speed of the edge. For this we issue the following query.

DROP TABLE IF EXISTS EdgeSpeed;
CREATE TABLE EdgeSpeed AS
SELECT P.edge, twavg(speed(atGeometry(T.trip, ST_Buffer(P.geom, 0.1)))) * 3.6 AS twavg
FROM Trips T, Paths P
WHERE T.source = P.start_vid AND T.target = P.end_vid AND P.edge > 0
ORDER BY P.edge;

This is an even more expensive query than the previous one since it took more than 2 hours in my laptop. Given a trip and an
edge, the query restricts the trip to the geometry of the edge and computes the time-weighted average of the speed. Notice that
the ST_Buffer is used to cope with the floating-point precision. After that we can compute the speed map as follows.

CREATE TABLE SpeedMap AS
WITH Temp AS (

SELECT edge, avg(twavg) FROM EdgeSpeed GROUP BY edge)
SELECT id, maxspeed_forward AS maxspeed, geom, avg, avg / maxspeed_forward AS perc
FROM Edges E, Temp T
WHERE E.id = T.edge;

BerlinMOD Benchmark on MobilityDB 25 / 60

Figure 2.3: Assigning in QGIS a gradient color from blue to red according to the value of the attribute count.

Figure 2.4: Visualization of the edges of the graph according to the number of trips that traversed the edges.

BerlinMOD Benchmark on MobilityDB 26 / 60

Figure 2.5 shows the visualization of the speed map without and with the base map.

2.7 Understanding the Generation Process

We describe next the main steps in the generation of the BerlinMOD scenario. The generator uses multiple parameters that can
be set to customize the generation process. We explain in detail these parameters in Section 2.9. It is worth noting that the
procedures explained in this section have been slightly simplified with respect to the actual procedures by removing ancillary
details concerning the generation of tracing messages at various verbosity levels.

We start by creating a first set of tables for containing the generated data as follows.

CREATE TABLE Vehicle(id int PRIMARY KEY, home bigint NOT NULL, work bigint NOT NULL,
noNeighbours int);

CREATE TABLE Destinations(vehicle int, source bigint, target bigint,
PRIMARY KEY (vehicle, source, target));

CREATE TABLE Licences(vehicle int PRIMARY KEY, licence text, type text, model text);
CREATE TABLE Neighbourhood(vehicle int, seq int, node bigint NOT NULL,

PRIMARY KEY (vehicle, seq));

-- Get the number of nodes
SELECT COUNT(*) INTO noNodes FROM Nodes;

FOR i IN 1..noVehicles LOOP
-- Fill the Vehicles table
IF nodeChoice = 'Network Based' THEN

homeNode = random_int(1, noNodes);
workNode = random_int(1, noNodes);

ELSE
homeNode = berlinmod_selectHomeNode();
workNode = berlinmod_selectWorkNode();

END IF;
IF homeNode IS NULL OR workNode IS NULL THEN

RAISE EXCEPTION ' The home and the work nodes cannot be NULL';
END IF;
INSERT INTO Vehicle VALUES (i, homeNode, workNode);

-- Fill the Destinations table
INSERT INTO Destinations(vehicle, source, target) VALUES

(i, homeNode, workNode), (i, workNode, homeNode);

-- Fill the Licences table
licence = berlinmod_createLicence(i);
type = berlinmod_vehicleType();
model = berlinmod_vehicleModel();
INSERT INTO Licences VALUES (i, licence, type, model);

-- Fill the Neighbourhood table
INSERT INTO Neighbourhood
WITH Temp AS (

SELECT i AS vehicle, N2.id AS node
FROM Nodes N1, Nodes N2
WHERE N1.id = homeNode AND N1.id <> N2.id AND
ST_DWithin(N1.geom, N2.geom, P_NEIGHBOURHOOD_RADIUS))

SELECT i, ROW_NUMBER() OVER () as seq, node
FROM Temp;
END LOOP;

CREATE UNIQUE INDEX Vehicle_id_idx ON Vehicle USING BTREE(id);
CREATE UNIQUE INDEX Neighbourhood_pkey_idx ON Neighbourhood USING BTREE(vehicle, seq);

BerlinMOD Benchmark on MobilityDB 27 / 60

Figure 2.5: Visualization of the edges of the graph according to the speed of trips that traversed the edges.

BerlinMOD Benchmark on MobilityDB 28 / 60

UPDATE Vehicle V
SET noNeighbours = (SELECT COUNT(*) FROM Neighbourhood N WHERE N.vehicle = V.id);

We start by storing in the Vehicles table the home and the work node of each vehicle. Depending on the value of the variable
nodeChoice, we chose these nodes either with a uniform distribution among all nodes in the network or we call specific
functions that take into account population and employment statistics in the area covered by the generation. We then keep track
in the Destinations table of the two trips to and from work and we store in the Licences table information describing the
vehicle. Finally, we compute in the Neighbourhood table the set of nodes that are within a given distance of the home node
of every vehicle. This distance is stated by the parameter P_NEIGHBOURHOOD_RADIUS, which is set by default to 3 Km.

We create now auxiliary tables containing benchmarking data. The number of rows these tables is determined by the parameter
P_SAMPLE_SIZE, which is set by default to 100. These tables are used by the BerlinMOD benchmark to assess the performance
of various types of queries.

CREATE TABLE QueryPoints(id int PRIMARY KEY, geom geometry(Point));
INSERT INTO QueryPoints
WITH Temp AS (

SELECT id, random_int(1, noNodes) AS node
FROM generate_series(1, P_SAMPLE_SIZE) id)

SELECT T.id, N.geom
FROM Temp T, Nodes N
WHERE T.node = N.id;

CREATE TABLE QueryRegions(id int PRIMARY KEY, geom geometry(Polygon));
INSERT INTO QueryRegions
WITH Temp AS (

SELECT id, random_int(1, noNodes) AS node
FROM generate_series(1, P_SAMPLE_SIZE) id)

SELECT T.id, ST_Buffer(N.geom, random_int(1, 997) + 3.0, random_int(0, 25)) AS geom
FROM Temp T, Nodes N
WHERE T.node = N.id;

CREATE TABLE QueryInstants(id int PRIMARY KEY, instant timestamptz);
INSERT INTO QueryInstants
SELECT id, startDay + (random() * noDays) * interval '1 day' AS instant
FROM generate_series(1, P_SAMPLE_SIZE) id;

CREATE TABLE QueryPeriods(id int PRIMARY KEY, period period);
INSERT INTO QueryPeriods
WITH Instants AS (

SELECT id, startDay + (random() * noDays) * interval '1 day' AS instant
FROM generate_series(1, P_SAMPLE_SIZE) id)

SELECT id, Period(instant, instant + abs(random_gauss()) * interval '1 day',
true, true) AS period

FROM Instants;

We generate now the leisure trips. There is at most one leisure trip in the evening of a week day and at most two leisure trips each
day of the weekend, one in the morning and another one in the afternoon. Each leisure trip is composed of 1 to 3 destinations.
The leisure trip starts and ends at the home node and visits successively these destinations. In our implementation, the various
subtrips from a source to a destination node of a leisure trip are encoded independently, contrary to what is done in Secondo
where a leisure trip is encoded as a single trip and stops are added between successive destinations.

CREATE TABLE LeisureTrip(vehicle int, day date, tripNo int, seq int, source bigint,
target bigint, PRIMARY KEY (vehicle, day, tripNo, seq));

-- Loop for every vehicle
FOR i IN 1..noVehicles LOOP
-- Get home node and number of neighbour nodes

BerlinMOD Benchmark on MobilityDB 29 / 60

SELECT home, noNeighbours INTO homeNode, noNeigh
FROM Vehicle V WHERE V.id = i;
day = startDay;
-- Loop for every generation day
FOR j IN 1..noDays LOOP

weekday = date_part('dow', day);
-- Generate leisure trips (if any)
-- 1: Monday, 5: Friday
IF weekday BETWEEN 1 AND 5 THEN
noLeisTrips = 1;

ELSE
noLeisTrips = 2;

END IF;
-- Loop for every leisure trip in a day (1 or 2)
FOR k IN 1..noLeisTrips LOOP
-- Generate a leisure trip with a 40% probability
IF random() <= 0.4 THEN

-- Select a number of destinations between 1 and 3
IF random() < 0.8 THEN

noDest = 1;
ELSIF random() < 0.5 THEN

noDest = 2;
ELSE

noDest = 3;
END IF;
sourceNode = homeNode;
FOR m IN 1..noDest + 1 LOOP

IF m <= noDest THEN
targetNode = berlinmod_selectDestNode(i, noNeigh, noNodes);

ELSE
targetNode = homeNode;

END IF;
IF targetNode IS NULL THEN
RAISE EXCEPTION ' Destination node cannot be NULL';

END IF;
INSERT INTO LeisureTrip VALUES
(i, day, k, m, sourceNode, targetNode);

INSERT INTO Destinations(vehicle, source, target) VALUES
(i, sourceNode, targetNode) ON CONFLICT DO NOTHING;

sourceNode = targetNode;
END LOOP;

END IF;
END LOOP;
day = day + 1 * interval '1 day';

END LOOP;
END LOOP;

CREATE INDEX Destinations_vehicle_idx ON Destinations USING BTREE(vehicle);

For each vehicle and each day, we determine the number of potential leisure trips depending on whether it is a week or weekend
day. A leisure trip is generated with a probability of 40% and is composed of 1 to 3 destinations. These destinations are chosen
so that 80% of the destinations are from the neighbourhood of the vehicle and 20% are from the complete graph. The information
about the composition of the leisure trips is then added to the LeisureTrip and Destinations tables.

We then call pgRouting to generate the path for each source and destination nodes in the Destinations table.

CREATE TABLE Paths(
-- This attribute is needed for partitioning the table for big scale factors
vehicle int,
-- The following attributes are generated by pgRouting
start_vid bigint, end_vid bigint, seq int, node bigint, edge bigint,

BerlinMOD Benchmark on MobilityDB 30 / 60

-- The following attributes are filled from the Edges table
geom geometry NOT NULL, speed float NOT NULL, category int NOT NULL,
PRIMARY KEY (vehicle, start_vid, end_vid, seq));

-- Select query sent to pgRouting
IF pathMode = 'Fastest Path' THEN
query1_pgr = 'SELECT id, source, target, cost_s AS cost,'

'reverse_cost_s as reverse_cost FROM edges';
ELSE
query1_pgr = 'SELECT id, source, target, length_m AS cost,'

'length_m * sign(reverse_cost_s) as reverse_cost FROM edges';
END IF;
-- Get the total number of paths and number of calls to pgRouting
SELECT COUNT(*) INTO noPaths FROM (SELECT DISTINCT source, target FROM Destinations) AS T;
noCalls = ceiling(noPaths / P_PGROUTING_BATCH_SIZE::float);

FOR i IN 1..noCalls LOOP
query2_pgr = format('SELECT DISTINCT source, target FROM Destinations '

'ORDER BY source, target LIMIT %s OFFSET %s',
P_PGROUTING_BATCH_SIZE, (i - 1) * P_PGROUTING_BATCH_SIZE);

INSERT INTO Paths(vehicle, start_vid, end_vid, seq, node, edge, geom, speed, category)
WITH Temp AS (

SELECT start_vid, end_vid, path_seq, node, edge
FROM pgr_dijkstra(query1_pgr, query2_pgr, true)
WHERE edge > 0)

SELECT D.vehicle, start_vid, end_vid, path_seq, node, edge,
-- adjusting direction of the edge traversed
CASE
WHEN T.node = E.source THEN E.geom
ELSE ST_Reverse(E.geom)

END AS geom, E.maxspeed_forward AS speed,
berlinmod_roadCategory(E.tag_id) AS category

FROM Destinations D, Temp T, Edges E
WHERE D.source = T.start_vid AND D.target = T.end_vid AND E.id = T.edge;
END LOOP;

CREATE INDEX Paths_vehicle_start_vid_end_vid_idx ON Paths USING
BTREE(vehicle, start_vid, end_vid);

The variable pathMode determines whether pgRouting computes either the fastest or the shortest path from a source to a
destination node. Then, we determine the number of calls to pgRouting. Indeed, depending on the available memory of the
computer, there is a limit in the number of paths to be computed by pgRouting in a single call. The paths are stored in the
Paths table. In addition to the columns generated by pgRouting, we add the geometry (adjusting the direction if necessary), the
maximum speed, and the category of the edge. The BerlinMOD data generator considers three road categories: side road, main
road, and freeway. The OSM road types are mapped to one of these categories in the function berlinmod_roadCategory.

We are now ready to generate the trips.

DROP TYPE IF EXISTS step CASCADE;
CREATE TYPE step as (linestring geometry, maxspeed float, category int);

CREATE FUNCTION berlinmod_createTrips(noVehicles int, noDays int, startDay date,
disturbData boolean)

RETURNS void LANGUAGE plpgsql STRICT AS $$
DECLARE

/* Declaration of variables and parameters ... */
BEGIN

DROP TABLE IF EXISTS Trips;
CREATE TABLE Trips(vehicle int, day date, seq int, source bigint, target bigint,
trip tgeompoint, trajectory geometry, PRIMARY KEY (vehicle, day, seq));

BerlinMOD Benchmark on MobilityDB 31 / 60

-- Loop for each vehicle
FOR i IN 1..noVehicles LOOP
-- Get home -> work and work -> home paths
SELECT home, work INTO homeNode, workNode
FROM Vehicle V WHERE V.id = i;
SELECT array_agg((geom, speed, category)::step ORDER BY seq) INTO homework
FROM Paths WHERE vehicle = i AND start_vid = homeNode AND end_vid = workNode;
SELECT array_agg((geom, speed, category)::step ORDER BY seq) INTO workhome
FROM Paths WHERE vehicle = i AND start_vid = workNode AND end_vid = homeNode;
d = startDay;
-- Loop for each generation day
FOR j IN 1..noDays LOOP

weekday = date_part('dow', d);
-- 1: Monday, 5: Friday
IF weekday BETWEEN 1 AND 5 THEN

-- Crete trips home -> work and work -> home
t = d + time '08:00:00' + CreatePauseN(120);
createTrip(homework, t, disturbData);
INSERT INTO Trips VALUES (i, d, 1, homeNode, workNode, trip, trajectory(trip));
t = d + time '16:00:00' + CreatePauseN(120);
trip = createTrip(workhome, t, disturbData);
INSERT INTO Trips VALUES (i, d, 2, workNode, homeNode, trip, trajectory(trip));
tripSeq = 2;

END IF;
-- Get the number of leisure trips
SELECT COUNT(DISTINCT tripNo) INTO noLeisTrip
FROM LeisureTrip L
WHERE L.vehicle = i AND L.day = d;
-- Loop for each leisure trip (0, 1, or 2)
FOR k IN 1..noLeisTrip LOOP

IF weekday BETWEEN 1 AND 5 THEN
t = d + time '20:00:00' + CreatePauseN(90);
leisNo = 1;

ELSE
-- Determine whether it is a morning/afternoon (1/2) trip
IF noLeisTrip = 2 THEN

leisNo = k;
ELSE

SELECT tripNo INTO leisNo FROM LeisureTrip L
WHERE L.vehicle = i AND L.day = d LIMIT 1;

END IF;
-- Determine the start time
IF leisNo = 1 THEN
t = d + time '09:00:00' + CreatePauseN(120);

ELSE
t = d + time '17:00:00' + CreatePauseN(120);

END IF;
END IF;
-- Get the number of subtrips (number of destinations + 1)
SELECT count(*) INTO noSubtrips
FROM LeisureTrip L
WHERE L.vehicle = i AND L.tripNo = leisNo AND L.day = d;
FOR m IN 1..noSubtrips LOOP
-- Get the source and destination nodes of the subtrip
SELECT source, target INTO sourceNode, targetNode
FROM LeisureTrip L
WHERE L.vehicle = i AND L.day = d AND L.tripNo = leisNo AND L.seq = m;
-- Get the path
SELECT array_agg((geom, speed, category)::step ORDER BY seq) INTO path
FROM Paths P
WHERE vehicle = i AND start_vid = sourceNode AND end_vid = targetNode;
trip = createTrip(path, t, disturbData);

BerlinMOD Benchmark on MobilityDB 32 / 60

tripSeq = tripSeq + 1;
INSERT INTO Trips VALUES
(i, d, tripSeq, sourceNode, targetNode, trip, trajectory(trip));

-- Add a delay time in [0, 120] min using a bounded Gaussian distribution
t = endTimestamp(trip) + createPause();

END LOOP;
END LOOP;
d = d + 1 * interval '1 day';

END LOOP;
END LOOP;
RETURN;

END; $$

We create a type step which is a record composed of the geometry, the maximum speed, and the category of an edge. The
procedure loops for each vehicle and each day and calls the procedure createTrip for creating the trips. If the day is a
weekday, we generate the trips from home to work and from work to home starting, respectively, at 8 am and 4 pm plus a random
non-zero duration of 120 minutes using a uniform distribution. We then generate the leisure trips. During the week days, the
possible evening leisure trip starts at 8 pm plus a random random non-zero duration of 90 minutes, while during the weekend
days, the two possible morning and afternoon trips start, respectively, at 9 am and 5 pm plus a random non-zero duration of
120 minutes. Between the multiple destinations of a leisure trip we add a delay time of maximum 120 minutes using a bounded
Gaussian distribution.

Finally, we explain the procedure that create a trip.

CREATE OR REPLACE FUNCTION createTrip(edges step[], startTime timestamptz,
disturbData boolean)

RETURNS tgeompoint LANGUAGE plpgsql STRICT AS $$
DECLARE

/* Declaration of variables and parameters ... */
BEGIN

srid = ST_SRID((edges[1]).linestring);
p1 = ST_PointN((edges[1]).linestring, 1); x1 = ST_X(p1); y1 = ST_Y(p1);
curPos = p1; t = startTime;
instants[1] = tgeompoint_inst(p1, t);
curSpeed = 0; l = 2; noEdges = array_length(edges, 1);
-- Loop for every edge
FOR i IN 1..noEdges LOOP
-- Get the information about the current edge
linestring = (edges[i]).linestring; maxSpeedEdge = (edges[i]).maxSpeed;
category = (edges[i]).category;
-- Determine the number of segments
SELECT array_agg(geom ORDER BY path) INTO points
FROM ST_DumpPoints(linestring);
noSegs = array_length(points, 1) - 1;
-- Loop for every segment
FOR j IN 1..noSegs LOOP

p2 = points[j + 1]; x2 = ST_X(p2); y2 = ST_Y(p2);
-- If there is a segment ahead in the current edge compute the angle of the turn
-- and the maximum speed at the turn depending on this angle
IF j < noSegs THEN

p3 = points[j + 2];
alpha = degrees(ST_Angle(p1, p2, p3));
IF abs(mod(alpha::numeric, 360.0)) < P_EPSILON THEN
maxSpeedTurn = maxSpeedEdge;

ELSE
maxSpeedTurn = mod(abs(alpha - 180.0)::numeric, 180.0) / 180.0 * maxSpeedEdge;

END IF;
END IF;
-- Determine the number of fractions
segLength = ST_Distance(p1, p2);

BerlinMOD Benchmark on MobilityDB 33 / 60

IF segLength < P_EPSILON THEN
RAISE EXCEPTION 'Segment % of edge % has zero length', j, i;

END IF;
fraction = P_EVENT_LENGTH / segLength;
noFracs = ceiling(segLength / P_EVENT_LENGTH);
-- Loop for every fraction
k = 1;
WHILE k < noFracs LOOP

-- If the current speed is zero, apply an acceleration event
IF curSpeed <= P_EPSILON_SPEED THEN
-- If we are not approaching a turn
IF k < noFracs THEN

curSpeed = least(P_EVENT_ACC, maxSpeedEdge);
ELSE

curSpeed = least(P_EVENT_ACC, maxSpeedTurn);
END IF;

ELSE
-- If the current speed is not zero, apply a deceleration or a stop event
-- with a probability proportional to the maximun speed
IF random() <= P_EVENT_C / maxSpeedEdge THEN

IF random() <= P_EVENT_P THEN
-- Apply a stop event
curSpeed = 0.0;

ELSE
-- Apply a deceleration event
curSpeed = curSpeed * random_binomial(20, 0.5) / 20.0;

END IF;
ELSE

-- Otherwise, apply an acceleration event
IF k = noFracs AND j < noSegs THEN
maxSpeed = maxSpeedTurn;

ELSE
maxSpeed = maxSpeedEdge;

END IF;
curSpeed = least(curSpeed + P_EVENT_ACC, maxSpeed);

END IF;
END IF;
-- If speed is zero add a wait time
IF curSpeed < P_EPSILON_SPEED THEN
waitTime = random_exp(P_DEST_EXPMU);
IF waitTime < P_EPSILON THEN

waitTime = P_DEST_EXPMU;
END IF;
t = t + waitTime * interval '1 sec';

ELSE
-- Otherwise, move current position towards the end of the segment
IF k < noFracs THEN
x = x1 + ((x2 - x1) * fraction * k);
y = y1 + ((y2 - y1) * fraction * k);
IF disturbData THEN
dx = (2 * P_GPS_STEPMAXERR * rand()) - P_GPS_STEPMAXERR;
dy = (2 * P_GPS_STEPMAXERR * rand()) - P_GPS_STEPMAXERR;
errx = errx + dx; erry = erry + dy;
IF errx > P_GPS_TOTALMAXERR THEN
errx = P_GPS_TOTALMAXERR;

END IF;
IF errx < - 1 * P_GPS_TOTALMAXERR THEN
errx = -1 * P_GPS_TOTALMAXERR;

END IF;
IF erry > P_GPS_TOTALMAXERR THEN
erry = P_GPS_TOTALMAXERR;

END IF;

BerlinMOD Benchmark on MobilityDB 34 / 60

IF erry < -1 * P_GPS_TOTALMAXERR THEN
erry = -1 * P_GPS_TOTALMAXERR;

END IF;
x = x + dx; y = y + dy;

END IF;
curPos = ST_SetSRID(ST_Point(x, y), srid);
curDist = P_EVENT_LENGTH;

ELSE
curPos = p2;
curDist = segLength - (segLength * fraction * (k - 1));

END IF;
travelTime = (curDist / (curSpeed / 3.6));
IF travelTime < P_EPSILON THEN

travelTime = P_DEST_EXPMU;
END IF;
t = t + travelTime * interval '1 sec';
k = k + 1;

END IF;
instants[l] = tgeompoint_inst(curPos, t);
l = l + 1;

END LOOP;
p1 = p2; x1 = x2; y1 = y2;

END LOOP;
-- If we are not already in a stop, apply a stop event with a probability
-- depending on the category of the current edge and the next one (if any)
IF curSpeed > P_EPSILON_SPEED AND i < noEdges THEN

nextCategory = (edges[i + 1]).category;
IF random() <= P_DEST_STOPPROB[category][nextCategory] THEN

curSpeed = 0;
waitTime = random_exp(P_DEST_EXPMU);
IF waitTime < P_EPSILON THEN
waitTime = P_DEST_EXPMU;

END IF;
t = t + waitTime * interval '1 sec';
instants[l] = tgeompoint_inst(curPos, t);
l = l + 1;

END IF;
END IF;

END LOOP;
RETURN tgeompoint_seq(instants, true, true, true);

END; $$

The procedure receives as first argument a path from a source to a destination node, which is an array of triples composed of the
geometry, the maximum speed, and the category of an edge of the path. The other arguments are the timestamp at which the trip
starts and a Boolean value determining whether the points composed the trip are disturbed to simulate GPS errors. The output
of the function is a temporal geometry point following this path. The procedure loops for each edge of the path and determines
the number of segments of the edge, where a segment is a straight line defined by two consecutive points. For each segment, we
determine the angle between the current segment and the next one (if any) to compute the maximum speed at the turn. This is
determined by multiplying the maximum speed of the segment by a factor proportional to the angle so that the factor is 1.00 at
both 0° and 360° and is 0.0 at 180°. Examples of values of degrees and the associated factor are given next.

0: 1.00, 5: 0.97, 45: 0.75, 90: 0.50, 135: 0.25, 175: 0.03
180: 0.00, 185: 0.03, 225: 0.25, 270: 0.50, 315: 0.75, 355: 0.97, 360: 0.00

Each segment is divided in fractions of length P_EVENT_LENGTH, which is by default 5 meters. We then loop for each fraction
and choose to add one event that can be an acceleration, a deceleration, or a stop event. If the speed of the vehicle is zero,
only an accelation event can happen. For this, we increase the current speed with the value of P_EVENT_ACC, which is by
default 12 Km/h, and verify that the speed is not greater than the maximum speed of either the edge or the next turn for the last
fraction. Otherwise, if the current speed is not zero, we apply a deceleration or a stop event with a probability proportional to

BerlinMOD Benchmark on MobilityDB 35 / 60

the maximum speed of the edge, otherwise we apply an acceleration event. After applying the event, if the speed is zero we add
a waiting time with a random exponential distribution with mean P_DEST_EXPMU, which is by default 1 second. Otherwise,
we move the current position towards the end of the segment and, depending on the variable disturbData, we disturbe the
new position to simulate GPS errors. The timestamp at which the vehicle reaches the new position is determined by dividing
the distance traversed by the current speed. Finally, at the end of each segment, if the current speed is not zero, we add a stop
event depending on the categories of the current segment and the next one. This is determined by a transition matrix given by the
parameter P_DEST_STOPPROB.

2.8 Customizing the Generator to Your City

In order to customize the generator to a particular city the only thing we need is to define a bounding box that will be used to
download the data from OSM. There are many ways to obtain such a bounding box, and a typical way to proceed is to use one of
the multiple online services that allows one to visually define a bounding box over a map. Figure 2.6 shows how we can define
the bounding box around Barcelona using the web site bboxfinder.

Figure 2.6: Defining the bounding box for obtaining OSM data from Barcelona.

After obtaining the bounding box, we can proceed as we stated in Section 2.4. We create a new database barcelona, then add
both PostGIS, MobilityDB, and pgRouting to it.

CREATE EXTENSION mobilitydb CASCADE;
CREATE EXTENSION pgRouting;

Then, we download the OSM data from Barcelona using the Overpass API by writing the following in a terminal:

CITY="barcelona"
BBOX="2.042084,41.267743,2.258720,41.445043"
wget --progress=dot:mega -O "$CITY.osm"
"http://www.overpass-api.de/api/xapi?*[bbox=${BBOX}][@meta]"

http://bboxfinder.com/

BerlinMOD Benchmark on MobilityDB 36 / 60

We can optionally reduce the size of the OSM file as follows

sed -r "s/version=\"[0-9]+\" timestamp=\"[^\"]+\" changeset=\"[0-9]+\" uid=\"[0-9]+\"
user=\"[^\"]+\"//g" barcelona.osm -i.org

Finally, we load the map and convert it into a routable format suitable for pgRouting as follows.

osm2pgrouting -f barcelona.osm --dbname barcelona -c mapconfig_brussels.xml

2.9 Tuning the Generator Parameters

Multiple parameters can be used to tune the generator according to your needs. We describe next these parameters.

A first set of primary parameters determine the global behaviour of the generator. These parameters can also be set by a corre-
sponding optional argument when calling the function berlinmod_generate.

• P_SCALE_FACTOR: float: Main parameter that determines the size of the data generated. Default value: 0.005. Corre-
sponding optional argument: scaleFactor. By default, the scale factor determine the number of vehicles and the number
of days they are observed as follows:

noVehicles int = round((2000 * sqrt(P_SCALE_FACTOR))::numeric, 0)::int;
noDays int = round((sqrt(P_SCALE_FACTOR) * 28)::numeric, 0)::int;

For example, for a scale factor of 1.0, the number of vehicles and the number of days will be, respectively, 2000 and 28.
Alternatively, you can manually set the number of vehicles or the number of days using the optional arguments noVehicles
and noDays, which are both integers.

• P_START_DAY: date: The day the observation starts. Default value: Monday 2020-01-06. Corresponding optional argu-
ment: startDay.

• P_PATH_MODE: text: Method for selecting a path between source and target nodes. Possible values are ’Fastest
Path’ (default) and ’Shortest Path’. Corresponding optional argument: pathMode.

• P_NODE_CHOICE: text: Method for selecting home and work nodes. Possible values are ’Network Based’ for
chosing the nodes with a uniform distribution among all nodes (default) and ’Region Based’ to use the population and
number of enterprises statistics in the Regions tables. Corresponding optional argument: nodeChoice.

• P_DISTURB_DATA: boolean: Determine whether imprecision is added to the data generated. Possible values are false
(no imprecision, default) and true (disturbed data). Corresponding optional argument: disturbData.

• P_MESSAGES: text: Quantity of messages shown describing the generation process. Possible values are ’minimal’,
’mediummmm’, ’verbose’, and ’debug’. Corresponding optional argument: messages.

• P_TRIP_GENERATION: text: Determine the language used to generate the trips. Possible values are ’C’ (default)
and ’SQL’. Corresponding optional argument: tripGeneration. This parameter determines whether the SQL function
createTrip in the file berlinmod_datagenerator.sql or the C function create_trip in the distribution of
MobilityDB will be used for generating trips. Although the C function is faster than the corresponding SQL function, the SQL
function can be easily modified to further customize the data generation.

For example, possible calls of the berlinmod_generate function setting values for the parameters are as follows.

BerlinMOD Benchmark on MobilityDB 37 / 60

-- Use all default values
SELECT berlinmod_generate();
-- Set the scale factor and use all other default values
SELECT berlinmod_generate(scaleFactor := 2.0);
-- Set the number of vehicles and number of days
SELECT berlinmod_generate(noVehicles := 10, noDays := 10);

Another set of parameters determining the global behaviour of the generator are given next.

• P_RANDOM_SEED: float: Seed for the random generator used to ensure deterministic results. Default value: 0.5.

• P_NEIGHBOURHOOD_RADIUS: float: Radius in meters defining a node neigbourhood. Default value: 3000.0.

• P_SAMPLE_SIZE: int: Size for sample relations. Default value: 100.

• P_VEHICLE_TYPES: text[]: Set of vehicle types. Default value: {"passenger", "bus", "truck"}.

• P_VEHICLE_MODELS: text[]: Set of vehicle models. Default value:

{"Mercedes-Benz", "Volkswagen", "Maybach", "Porsche", "Opel", "BMW", "Audi", "Acabion",
"Borgward", "Wartburg", "Sachsenring", "Multicar"}

• P_PGROUTING_BATCH_SIZE: int: Number of paths sent in a batch to pgRouting. Default value: 1e5 .

Another set of paramaters determine how the trips are created out of the paths.

• P_EPSILON_SPEED: float: Minimum speed in Km/h that is considered as a stop and thus only an accelaration event can
be applied. Default value: 1.0.

• P_EPSILON: float: Minimum distance in the units of the coordinate system that is considered as zero. Default value:
0.0001.

• P_EVENT_C: float: The probability of a stop or a deceleration event is proportional to P_EVENT_C / maxspeed.
Default value: 1.0

• P_EVENT_P: float: The probability for an event to be a stop. The complement 1.0 - P_EVENT_P is the probability for
an event to be a deceleration. Default value: 0.1

• P_EVENT_LENGTH: float: Sampling distance in meters at which an acceleration, deceleration, or stop event may be
generated. Default value: 5.0.

• P_EVENT_ACC: float: Constant speed in Km/h that is added to the current speed in an acceleration event. Default value:
12.0.

• P_DEST_STOPPROB: float: Probabilities for forced stops at crossings depending on the road type. It is defined by a
transition matrix where lines and columns are ordered by side road (S), main road (M), freeway (F). The OSM highway types
must be mapped to one of these categories in the function berlinmod_roadCategory. Default value:

{{0.33, 0.66, 1.00}, {0.33, 0.50, 0.66}, {0.10, 0.33, 0.05}}

• P_DEST_EXPMU: float: Mean waiting time in seconds using an exponential distribution. Increasing/decreasing this
parameter allows us to slow down or speed up the trips. Could be think of as a measure of network congestion. Given a specific
path, fine-tuning this parameter enable us to obtain an average travel time for this path that is the same as the expected travel
time computed by a routing service such as, e.g., Google Maps. Default value: 1.0.

• P_GPS_TOTALMAXERR: float and P_GPS_STEPMAXERR: float: Parameters for simulating measuring errors. They
are only required when the parameter P_DISTURB_DATA is true. They are, respectively, the maximum total deviation from
the real position and maximum deviation per step, both in meters. Default values: 100.0 and 1.0.

BerlinMOD Benchmark on MobilityDB 38 / 60

2.10 Changing the Simulation Scenario

In this workshop, we have used until now the BerlinMOD scenario, which models the trajectories of persons going from home
to work in the morning and returning back from work to home in the evening during the week days, with one possible leisure
trip during the weekday nights and two possible leisure trips in the morning and in the afternoon of the weekend days. In this
section, we devise another scenario for the data generator. This scenario corresponds to a home appliance shop that has several
warehouses located in various places of the city. From each warehouse, the deliveries of appliances to customers are done
by vehicles belonging to the warehouse. Although this scenario is different than BerlinMOD, many things can be reused and
adapted. For example, home nodes can be replaced by warehouse locations, leisure destinations can be replaced by customer
locations, and in this way many functions of the BerlinMOD SQL code will work directly. This is a direct benefit of having the
simulation code written in SQL, so it will be easy to adapt to other scenarios. We describe next the needed changes.

Each day of the week excepted Sundays, deliveries of appliances from the warehouses to the customers are organized as follows.
Each warehouse has several vehicles that make the deliveries. To each vehicle is assigned a list of customers that must be
delivered during a day. A trip for a vehicle starts and ends at the warehouse and make the deliveries to the customers in the
order of the list. Notice that in a real-world situation, the scheduling of the deliveries requires to take into account customers’
availability in a time slot of a day and the time needed to make the delivery of the previous customers in the list. We do not take
into account these aspects in this simple simulation scenario.

To be able to run the delivery generator you need to execute the first two steps specified in Section 2.4 to load the street network
and prepare the base data for simulation, if not done already. The delivery generator can then be run as follows.

psql -h localhost -p 5432 -U dbowner -d brussels -f deliveries_datagenerator.sql
adds the pgplsql functions of the simulation to the database

psql -h localhost -p 5432 -U dbowner -d brussels \
-c 'select deliveries_generate(scaleFactor := 0.005)'
calls the main pgplsql function to start the simulation

If everything is correct, you should see an output like that starts with this:

INFO: ---
INFO: Starting deliveries generation with scale factor 0.005
INFO: ---
INFO: Parameters:
INFO: ------------
INFO: No. of warehouses = 7, No. of vehicles = 141, No. of days = 4
INFO: Start day = 2020-06-01, Path mode = Fastest Path, Disturb data = f
...

The generator will take about one minute. It will generate deliveries, according to the default parameters, for 141 cars over 2 days
starting from Monday, June 1st 2020. It is possible to generate more or less data by respectively passing a bigger or a smaller
scale factor value. Please refer to the Section 2.8 to see all the parameters that can be used to customize the simulation, with the
exception of the P_NEIGHBOURHOOD_RADIUS parameter, which is not used in this scenario.

We describe next the main steps in the generation of the deliveries scenario.

We start by generating the Warehouses table. Each warehouse is located at a random node of the network.

DROP TABLE IF EXISTS Warehouses;
CREATE TABLE Warehouses(warehouseId int, nodeId bigint, geom geometry(Point));
FOR i IN 1..noWarehouses LOOP

INSERT INTO Warehouses(warehouseId, nodeId, geom)
SELECT i, id, geom
FROM Nodes N
ORDER BY id LIMIT 1 OFFSET random_int(1, noNodes);

END LOOP;

BerlinMOD Benchmark on MobilityDB 39 / 60

We create a table Vehicles with all vehicles and the associated warehouse. Warehouses are associated to vehicles in a round-
robin way.

DROP TABLE IF EXISTS Vehicles;
CREATE TABLE Vehicles(vehicleId int PRIMARY KEY, licence text, type text, brand text,

warehouse int);
FOR i IN 1..noVehicles LOOP

licence = berlinmod_createLicence(i);
type = VEHICLETYPES[random_int(1, NOVEHICLETYPES)];
brand = NOVEHICLEBRANDS[random_int(1, NOVEHICLEBRANDS)];
warehouse = 1 + ((i - 1) % noWarehouses);
INSERT INTO Vehicles VALUES (i, licence, type, brand, warehouse);

END LOOP;

We create next the Trips and Destinations tables that contain, respectively, the list of source and destination nodes com-
posing the delivery trip of a vehicle for a day, and the list of source and destination nodes for all vehicles.

DROP TABLE IF EXISTS Trips;
CREATE TABLE Trips(vehicle int, day date, seq int, source bigint, target bigint,

PRIMARY KEY (vehicle, day, seq));
DROP TABLE IF EXISTS Destinations;
CREATE TABLE Destinations(id serial PRIMARY KEY, source bigint, target bigint);
-- Loop for every vehicle
FOR i IN 1..noVehicles LOOP

-- Get the warehouse node
SELECT W.node INTO warehouseNode
FROM Vehicles V, Warehouses W
WHERE V.vehicleId = i AND V.warehouse = W.warehouseId;
day = startDay;
-- Loop for every generation day
FOR j IN 1..noDays LOOP
-- Generate delivery trips excepted on Sunday
IF date_part('dow', day) <> 0 THEN

-- Select a number of destinations between 3 and 7
SELECT random_int(3, 7) INTO noDest;
sourceNode = warehouseNode;
prevNodes = '{}';
FOR k IN 1..noDest + 1 LOOP

IF k <= noDest THEN
targetNode = deliveries_selectDestNode(i, noNodes, prevNodes);
prevNodes = prevNodes || targetNode;

ELSE
targetNode = warehouseNode;

END IF;
IF targetNode IS NULL THEN
RAISE EXCEPTION ' Destination node cannot be NULL';

END IF;
IF sourceNode = targetNode THEN
RAISE EXCEPTION ' Source and destination nodes must be different, node: %', ←↩

sourceNode;
END IF;
-- Keep the start and end nodes of each subtrip
INSERT INTO Segments VALUES (i, day, k, sourceNode, targetNode);
INSERT INTO Destinations(source, target) VALUES (sourceNode, targetNode);
sourceNode = targetNode;

END LOOP;
END IF;
day = day + interval '1 day';

END LOOP;

BerlinMOD Benchmark on MobilityDB 40 / 60

END LOOP;

For every vehicle and every day which is not Sunday we proceed as follows. We randomly chose a number between 3 and 7
destinations and call the function deliveries_selectDestNode for determining these destinations. This function choses
a destination node which is different from the previous nodes of the delivery, which are kept in the variable prevNodes. Then,
the sequence of source and destination couples starting in the warehouse, visiting sequentially the clients to deliver and returning
to the warehouse are added to the tables Segments and Destinations.

Next, we compute the paths between all source and target nodes that are in the Destinations table. Such paths are generated
by pgRouting and stored in the Paths table.

DROP TABLE IF EXISTS Paths;
CREATE TABLE Paths(seq int, path_seq int, start_vid bigint, end_vid bigint,

node bigint, edge bigint, cost float, agg_cost float,
-- These attributes are filled in the subsequent update
geom geometry, speed float, category int);

-- Select query sent to pgRouting
IF pathMode = 'Fastest Path' THEN

query1_pgr = 'SELECT id, source, target, cost_s AS cost, '
'reverse_cost_s as reverse_cost FROM edges';

ELSE
query1_pgr = 'SELECT id, source, target, length_m AS cost, '
'length_m * sign(reverse_cost_s) as reverse_cost FROM edges';

END IF;
-- Get the total number of paths and number of calls to pgRouting
SELECT COUNT(*) INTO noPaths FROM (SELECT DISTINCT source, target FROM Destinations) AS T;
noCalls = ceiling(noPaths / P_PGROUTING_BATCH_SIZE::float);
FOR i IN 1..noCalls LOOP

query2_pgr = format('SELECT DISTINCT source, target FROM Destinations '
'ORDER BY source, target LIMIT %s OFFSET %s',
P_PGROUTING_BATCH_SIZE, (i - 1) * P_PGROUTING_BATCH_SIZE);

INSERT INTO Paths(seq, path_seq, start_vid, end_vid, node, edge, cost, agg_cost)
SELECT * FROM pgr_dijkstra(query1_pgr, query2_pgr, true);

END LOOP;
UPDATE Paths SET

-- adjusting directionality
geom = CASE WHEN node = E.source THEN E.geom ELSE ST_Reverse(E.geom) END,
speed = maxspeed_forward,
category = berlinmod_roadCategory(tag_id)

FROM Edges E WHERE E.id = edge;

After creating the Paths table, we set the query to be sent to pgRouting depending on whether we have want to compute the
fastest or the shortest paths between two nodes. The generator uses the parameter P_PGROUTING_BATCH_SIZE to determine
the maximum number of paths we compute in a single call to pgRouting. This parameter is set to 10,000 by default. Indeed,
there is limit in the number of paths that pgRouting can compute in a single call and this depends in the available memory of
the computer. Therefore, we need to determine the number of calls to pgRouting and compute the paths by calling the function
pgr_dijkstra. Finally, we need to adjust the directionality of the geometry of the edges depending on which direction a trip
traverses the edges, and set the speed and the category of the edges.

We explain how to generate the trips for a number of vehicles and a number of days starting at a given day.

DROP TABLE IF EXISTS Deliveries;
CREATE TABLE Deliveries(deliveryId int PRIMARY KEY, Vehicle int, Day date, noCustomers int,

Trip tgeompoint, Trajectory geometry);
DROP TABLE IF EXISTS Segments;
CREATE TABLE Segments(deliveryId int, seq int, source bigint, target bigint,

trip tgeompoint,
-- These columns are used for visualization purposes

BerlinMOD Benchmark on MobilityDB 41 / 60

trajectory geometry, sourceGeom geometry, PRIMARY KEY (deliveryId, seq));
delivId = 1;
aDay = startDay;
FOR i IN 1..noDays LOOP

SELECT date_part('dow', aDay) into weekday;
-- 6: saturday, 0: sunday
IF weekday <> 0 THEN
FOR j IN 1..noVehicles LOOP

-- Start delivery
t = aDay + time '07:00:00' + createPauseN(120);
-- Get the number of segments (number of destinations + 1)
SELECT count(*) INTO noSegments
FROM Trips
WHERE vehicle = j AND day = aDay;
FOR k IN 1..noSegments LOOP

-- Get the source and destination nodes of the segment
SELECT source, target INTO sourceNode, targetNode
FROM Trips
WHERE vehicle = j AND day = aDay AND seq = k;
-- Get the path
SELECT array_agg((geom, speed, category) ORDER BY path_seq) INTO path
FROM Paths P
WHERE start_vid = sourceNode AND end_vid = targetNode AND edge > 0;
IF path IS NULL THEN
RAISE EXCEPTION 'The path of a trip cannot be NULL. '

'Source node: %, target node: %, k: %, noSegments: %', sourceNode,
targetNode, k, noSegments;

END IF;
startTime = t;
trip = create_trip(path, t, disturbData, messages);
IF trip IS NULL THEN
RAISE EXCEPTION 'A trip cannot be NULL';

END IF;
t = endTimestamp(trip);
tripTime = t - startTime;
IF k < noSegments THEN
-- Add a delivery time in [10, 60] min using a bounded Gaussian distribution
deliveryTime = random_boundedgauss(10, 60) * interval '1 min';
t = t + deliveryTime;
trip = appendInstant(trip, tgeompoint_inst(endValue(trip), t));

END IF;
alltrips = alltrips || trip;
SELECT geom INTO sourceGeom FROM Nodes WHERE id = sourceNode;
INSERT INTO Segments(deliveryId, seq, source, target, trip, trajectory, sourceGeom)
VALUES (delivId, k, sourceNode, targetNode, trip, trajectory(trip), sourceGeom);

END LOOP;
trip = merge(alltrips);
INSERT INTO Deliveries(deliveryId, vehicle, day, noCustomers, trip, trajectory)

VALUES (delivId, j, aDay, noSegments - 1, trip, trajectory(trip));
delivId = delivId + 1;
alltrips = '{}';

END LOOP;
END IF;
aDay = aDay + interval '1 day';

END LOOP;

We start by creating the tables Deliveries and Segments. Then, the procedure simply loops for each day (excepted
Sundays) and for each vehicle and generates the deliveries. For this, we first set the start time of a delivery trip by adding to 7
am a random non-zero duration of 120 minutes using a uniform distribution. Then, for every couple of source and destination
nodes in a segment, we call the function create_trip that we have seen previously to generate the trip. We add a delivery
time between 10 and 60 minutes using a bounded Gaussian distribution before starting the trip to the next customer or the return

BerlinMOD Benchmark on MobilityDB 42 / 60

trip to the warehouse and then insert the trip into the Segments table.

Figure 2.7 and Figure 2.8 show visualizations of the data generated for the deliveries scenario.

Figure 2.7: Visualization of the data generated for the deliveries scenario. The road network is shown with blue lines, the
warehouses are shown with a red star, the routes taken by the deliveries are shown with black lines, and the location of the
customers with black points.

2.11 Creating a Graph from Input Data

In this workshop, we have used until now the network topology obtained by osm2pgrouting. However, in some circumstances it
is necessary to build the network topology ourselves, for example, when the data comes from other sources than OSM, such as
data from an official mapping agency. In this section we show how to build the network topology from input data. We import
Brussels data from OSM into a PostgreSQL database using osm2pgsql. Then, we construct the network topology using SQL so
that the resulting graph can be used with pgRouting. We show two approaches for doing this, depending on whether we want
to keep the original roads of the input data or we want to merge roads when they have similar characteristics such as road type,
direction, maximum speed, etc. At the end, we compare the two networks obtained with the one obtained by osm2pgrouting.

BerlinMOD Benchmark on MobilityDB 43 / 60

Figure 2.8: Visualization of the deliveries of one vehicle during one day. A delivery trip starts and ends at a warehouse and make
the deliveries to several customers, four in this case.

2.11.1 Creating the Graph

As we did at the beginning of this chapter, we load the OSM data from Brussels into PostgreSQL with the following command.

osm2pgsql --create --database brussels --host localhost brussels.osm

The table planet_osm_line contains all linear features imported from OSM, in particular road data, but also many other
features which are not relevant for our use case such as pedestrian paths, cycling ways, train ways, electric lines, etc. Therefore,
we use the attribute highway to extract the roads from this table. We first create a table containing the road types we are
interested in and associate to them a priority, a maximum speed, and a category as follows.

DROP TABLE IF EXISTS RoadTypes;
CREATE TABLE RoadTypes(id int PRIMARY KEY, type text, priority float, maxspeed float,
category int);
INSERT INTO RoadTypes VALUES
(101, 'motorway', 1.0, 120, 1),
(102, 'motorway_link', 1.0, 120, 1),
(103, 'motorway_junction', 1.0, 120, 1),
(104, 'trunk', 1.05, 120, 1),
(105, 'trunk_link', 1.05, 120, 1),
(106, 'primary', 1.15, 90, 2),
(107, 'primary_link', 1.15, 90, 1),
(108, 'secondary', 1.5, 70, 2),
(109, 'secondary_link', 1.5, 70, 2),
(110, 'tertiary', 1.75, 50, 2),
(111, 'tertiary_link', 1.75, 50, 2),
(112, 'residential', 2.5, 30, 3),
(113, 'living_street', 3.0, 20, 3),
(114, 'unclassified', 3.0, 20, 3),
(115, 'service', 4.0, 20, 3),
(116, 'services', 4.0, 20, 3);

Then, we create a table that contains the roads corresponding to one of the above types as follows.

BerlinMOD Benchmark on MobilityDB 44 / 60

DROP TABLE IF EXISTS Roads;
CREATE TABLE Roads AS
SELECT osm_id, admin_level, bridge, cutting, highway, junction, name, oneway, operator,
ref, route, surface, toll, tracktype, tunnel, width, way AS geom
FROM planet_osm_line
WHERE highway IN (SELECT type FROM RoadTypes);

CREATE INDEX Roads_geom_idx ON Roads USING GiST(geom);

We then create a table that contains all intersections between two roads as follows:

DROP TABLE IF EXISTS Intersections;
CREATE TABLE Intersections AS
WITH Temp1 AS (

SELECT ST_Intersection(a.geom, b.geom) AS geom
FROM Roads a, Roads b
WHERE a.osm_id < b.osm_id AND ST_Intersects(a.geom, b.geom)),

Temp2 AS (
SELECT DISTINCT geom
FROM Temp1
WHERE geometrytype(geom) = 'POINT'
UNION
SELECT (ST_DumpPoints(geom)).geom
FROM Temp1
WHERE geometrytype(geom) = 'MULTIPOINT')

SELECT ROW_NUMBER() OVER () AS id, geom
FROM Temp2;

CREATE INDEX Intersections_geom_idx ON Intersections USING GIST(geom);

The temporary table Temp1 computes all intersections between two different roads, while the temporary table Temp2 se-
lects all intersections of type point and splits the intersections of type multipoint into the component points with the function
ST_DumpPoints. Finally, the last query adds a sequence identifier to the resulting intersections.

Our next task is to use the table Intersections we have just created to split the roads. This is done as follows.

DROP TABLE IF EXISTS Segments;
CREATE TABLE Segments AS
SELECT DISTINCT osm_id, (ST_Dump(ST_Split(R.geom, I.geom))).geom
FROM Roads R, Intersections I
WHERE ST_Intersects(R.Geom, I.geom);

CREATE INDEX Segments_geom_idx ON Segments USING GIST(geom);

The function ST_Split breaks the geometry of a road using an intersection and the function ST_Dump obtains the individual
segments resulting from the splitting. However, as shown in the following query, there are duplicate segments with distinct
osm_id.

SELECT S1.osm_id, S2.osm_id
FROM Segments S1, Segments S2
WHERE S1.osm_id < S2.osm_id AND st_intersects(S1.geom, S2.geom) AND

ST_Equals(S1.geom, S2.geom);
-- 490493551 740404156
-- 490493551 740404157

We can remove those duplicates segments with the following query, which keeps arbitrarily the smaller osm_id.

BerlinMOD Benchmark on MobilityDB 45 / 60

DELETE FROM Segments S1
USING Segments S2
WHERE S1.osm_id > S2.osm_id AND ST_Equals(S1.geom, S2.geom);

We can obtain some characteristics of the segments with the following queries.

SELECT DISTINCT geometrytype(geom) FROM Segments;
-- "LINESTRING"

SELECT min(ST_NPoints(geom)), max(ST_NPoints(geom)) FROM Segments;
-- 2 283

Now we are ready to obtain a first set of nodes for our graph.

DROP TABLE IF EXISTS TempNodes;
CREATE TABLE TempNodes AS
WITH Temp(geom) AS (

SELECT ST_StartPoint(geom) FROM Segments UNION
SELECT ST_EndPoint(geom) FROM Segments)

SELECT ROW_NUMBER() OVER () AS id, geom
FROM Temp;

CREATE INDEX TempNodes_geom_idx ON TempNodes USING GIST(geom);

The above query select as nodes the start and the end points of the segments and assigns to each of them a sequence identifier.
We construct next the set of edges of our graph as follows.

DROP TABLE IF EXISTS Edges;
CREATE TABLE Edges(id bigint, osm_id bigint, tag_id int, length_m float, source bigint,

target bigint, cost_s float, reverse_cost_s float, one_way int, maxspeed float,
priority float, geom geometry);

INSERT INTO Edges(id, osm_id, source, target, geom, length_m)
SELECT ROW_NUMBER() OVER () AS id, S.osm_id, N1.id AS source, N2.id AS target, S.geom,

ST_Length(S.geom) AS length_m
FROM Segments S, TempNodes N1, TempNodes N2
WHERE ST_Intersects(ST_StartPoint(S.geom), N1.geom) AND

ST_Intersects(ST_EndPoint(S.geom), N2.geom);

CREATE UNIQUE INDEX Edges_id_idx ON Edges USING BTREE(id);
CREATE INDEX Edges_geom_index ON Edges USING GiST(geom);

The above query connects the segments obtained previously to the source and target nodes. We can verify that all edges were
connected correctly to their source and target nodes using the following query.

SELECT count(*) FROM Edges WHERE source IS NULL OR target IS NULL;
-- 0

Now we can fill the other attributes of the edges. We start first with the attributes tag_id, priority, and maxspeed, which
are obtained from the table RoadTypes using the attribute highway.

UPDATE Edges E
SET tag_id = T.id, priority = T.priority, maxspeed = T.maxSpeed
FROM Roads R, RoadTypes T
WHERE E.osm_id = R.osm_id AND R.highway = T.type;

BerlinMOD Benchmark on MobilityDB 46 / 60

We continue with the attribute one_way according to the semantics stated in the OSM documentation.

UPDATE Edges E
SET one_way = CASE

WHEN R.oneway = 'yes' OR R.oneway = 'true' OR R.oneway = '1' THEN 1 -- Yes
WHEN R.oneway = 'no' OR R.oneway = 'false' OR R.oneway = '0' THEN 2 -- No
WHEN R.oneway = 'reversible' THEN 3 -- Reversible
WHEN R.oneway = '-1' OR R.oneway = 'reversed' THEN -1 -- Reversed
WHEN R.oneway IS NULL THEN 0 -- Unknown
END

FROM Roads R
WHERE E.osm_id = R.osm_id;

We compute the implied one way restriction based on OSM documentation as follows.

UPDATE Edges E
SET one_way = 1
FROM Roads R
WHERE E.osm_id = R.osm_id AND R.oneway IS NULL AND

(R.junction = 'roundabout' OR R.highway = 'motorway');

Finally, we compute the cost and reverse cost in seconds according to the length and the maximum speed of the edge.

UPDATE Edges E SET
cost_s = CASE

WHEN one_way = -1 THEN - length_m / (maxspeed / 3.6)
ELSE length_m / (maxspeed / 3.6)
END,

reverse_cost_s = CASE
WHEN one_way = 1 THEN - length_m / (maxspeed / 3.6)
ELSE length_m / (maxspeed / 3.6)
END;

Our last task is to compute the strongly connected components of the graph. This is necessary to ensure that there is a path
between every couple of arbritrary nodes in the graph.

DROP TABLE IF EXISTS Nodes;
CREATE TABLE Nodes AS
WITH Components AS (

SELECT * FROM pgr_strongComponents(
'SELECT id, source, target, length_m AS cost, '
'length_m * sign(reverse_cost_s) AS reverse_cost FROM Edges')),

LargestComponent AS (
SELECT component, count(*) FROM Components
GROUP BY component ORDER BY count(*) DESC LIMIT 1),

Connected AS (
SELECT geom
FROM TempNodes N, LargestComponent L, Components C
WHERE N.id = C.node AND C.component = L.component)

SELECT ROW_NUMBER() OVER () AS id, geom
FROM Connected;

CREATE UNIQUE INDEX Nodes_id_idx ON Nodes USING BTREE(id);
CREATE INDEX Nodes_geom_idx ON Nodes USING GiST(geom);

https://wiki.openstreetmap.org/wiki/Key:oneway

BerlinMOD Benchmark on MobilityDB 47 / 60

The temporary table Components is obtained by calling the function pgr_strongComponents from pgRouting, the tem-
porary table LargestComponent selects the largest component from the previous table, and the temporary table Connected
selects all nodes that belong to the largest component. Finally, the last query assigns a sequence identifier to all nodes.

Now that we computed the nodes of the graph, we need to link the edges with the identifiers of these nodes. This is done as
follows.

UPDATE Edges SET source = NULL, target = NULL;

UPDATE Edges E SET
source = N1.id, target = N2.id

FROM Nodes N1, Nodes N2
WHERE ST_Intersects(E.geom, N1.geom) AND ST_StartPoint(E.geom) = N1.geom AND

ST_Intersects(E.geom, N2.geom) AND ST_EndPoint(E.geom) = N2.geom;

We first set the identifiers of the source and target nodes to NULL before connecting them to the identifiers of the node. Finally,
we delete the edges whose source or target node has been removed.

DELETE FROM Edges WHERE source IS NULL OR target IS NULL;
-- DELETE 1080

In order to compare the graph we have just obtained with the one obtained by osm2pgrouting we can issue the following queries.

SELECT count(*) FROM Ways;
-- 83017
SELECT count(*) FROM Edges;
-- 81073
SELECT count(*) FROM Ways_vertices_pgr;
-- 66832
SELECT count(*) FROM Nodes;
-- 45494

As can be seen, we have reduced the size of the graph. This can also be shown in Figure 2.9, where the nodes we have obtained
are shown in blue and the ones obtained by osm2pgrouting are shown in red. It can be seen that osm2pgrouting adds many more
nodes to the graph, in particular, at the intersection of a road and a pedestrian crossing. Our method only adds nodes when there
is an intersection between two roads. We will show in the next section how this network can still be optimized by removing
unnecessary nodes and merging the corresponding edges.

2.11.2 Linear Contraction of the Graph

We show next a possible approach to contract the graph. This approach corresponds to linear contraction provided by pgRouting
although we do it differently by taking into account the type, the direction, and the geometry of the roads. For this, we get the
initial roads to merge as we did previously but now we put them in a table TempRoads.

DROP TABLE IF EXISTS TempRoads;
CREATE TABLE TempRoads AS
SELECT osm_id, admin_level, bridge, cutting, highway, junction, name, oneway, operator,

ref, route, surface, toll, tracktype, tunnel, width, way AS geom
FROM planet_osm_line
WHERE highway IN (SELECT type FROM RoadTypes);
-- SELECT 37045
CREATE INDEX TempRoads_geom_idx ON TempRoads USING GiST(geom);

https://docs.pgrouting.org/3.0/en/contraction-family.html

BerlinMOD Benchmark on MobilityDB 48 / 60

Figure 2.9: Comparison of the nodes obtained (in blue) with those obtained by osm2pgrouting (in red).

Then, we use the following procedure to merge the roads.

CREATE OR REPLACE FUNCTION mergeRoads()
RETURNS void LANGUAGE PLPGSQL AS $$
DECLARE

i integer = 1;
cnt integer;

BEGIN
-- Create tables
DROP TABLE IF EXISTS MergedRoads;
CREATE TABLE MergedRoads AS
SELECT *, '{}'::bigint[] AS path
FROM TempRoads;
CREATE INDEX MergedRoads_geom_idx ON MergedRoads USING GIST(geom);
DROP TABLE IF EXISTS Merge;
CREATE TABLE Merge(osm_id1 bigint, osm_id2 bigint, geom geometry);
DROP TABLE IF EXISTS DeletedRoads;
CREATE TABLE DeletedRoads(osm_id bigint);
-- Iterate until no geometry can be extended
LOOP
RAISE INFO 'Iteration %', i;
i = i + 1;
-- Compute the union of two roads
DELETE FROM Merge;
INSERT INTO Merge
SELECT R1.osm_id AS osm_id1, R2.osm_id AS osm_id2,

ST_LineMerge(ST_Union(R1.geom, R2.geom)) AS geom
FROM MergedRoads R1, TempRoads R2
WHERE R1.osm_id <> R2.osm_id AND R1.highway = R2.highway AND

R1.oneway = R2.oneway AND ST_Intersects(R1.geom, R2.geom) AND
ST_EndPoint(R1.geom) = ST_StartPoint(R2.geom) AND NOT EXISTS (

SELECT * FROM TempRoads R3
WHERE osm_id NOT IN (SELECT osm_id FROM DeletedRoads) AND

BerlinMOD Benchmark on MobilityDB 49 / 60

R3.osm_id <> R1.osm_id AND R3.osm_id <> R2.osm_id AND
ST_Intersects(R3.geom, ST_StartPoint(R2.geom))) AND

geometryType(ST_LineMerge(ST_Union(R1.geom, R2.geom))) = 'LINESTRING'
AND NOT St_Equals(ST_LineMerge(ST_Union(R1.geom, R2.geom)), R1.geom);

-- Exit if there is no more roads to extend
SELECT count(*) INTO cnt FROM Merge;
RAISE INFO 'Extended % roads', cnt;
EXIT WHEN cnt = 0;
-- Extend the geometries
UPDATE MergedRoads R SET

geom = M.geom,
path = R.path || osm_id2

FROM Merge M
WHERE R.osm_id = M.osm_id1;
-- Keep track of redundant roads
INSERT INTO DeletedRoads
SELECT osm_id2 FROM Merge
WHERE osm_id2 NOT IN (SELECT osm_id FROM DeletedRoads);

END LOOP;
-- Delete redundant roads
DELETE FROM MergedRoads R USING DeletedRoads M
WHERE R.osm_id = M.osm_id;
-- Drop tables
DROP TABLE Merge;
DROP TABLE DeletedRoads;
RETURN;

END; $$

The procedure starts by creating a table MergedRoads obtained by adding a column path to the table TempRoads created
before. This column keeps track of the identifiers of the roads that are merged with the current one and is initialized to an empty
array. It also creates two tables Merge and DeletedRoads that will contain, respectively, the result of merging two roads, and
the identifiers of the roads that will be deleted at the end of the process. The procedure then iterates while there is at least one
road that can be extended with the geometry of another one to which it connects to. More precisely, a road can be extended with
the geometry of another one if they are of the same type and the same direction (as indicated by the attributes highway and
one_way), the end point of the road is the start point of the other road, and this common point is not a crossing, that is, there is
no other road that starts and this common point. Notice that we only merge roads if their resulting geometry is a linestring and
we avoid infinite loops by verifying that the merge of the two roads is different from the original geometry. After that, we update
the roads with the new geometries and add the identifier of the road used to extend the geometry into the path attribute and the
DeletedRoads table. After exiting the loop, the procedure finishes by removing unnecessary roads.

The above procedure iterates 20 times for the largest segment that can be assembled, which is located in the ring-road around
Brussels between two exits. It takes 15 minutes to execute in my laptop.

INFO: Iteration 1
INFO: Extended 3431 roads
INFO: Iteration 2
INFO: Extended 1851 roads
INFO: Iteration 3
INFO: Extended 882 roads
INFO: Iteration 4
INFO: Extended 505 roads
[...]
INFO: Iteration 17
INFO: Extended 3 roads
INFO: Iteration 18
INFO: Extended 2 roads
INFO: Iteration 19
INFO: Extended 1 roads
INFO: Iteration 20
INFO: Extended 0 roads

BerlinMOD Benchmark on MobilityDB 50 / 60

After we apply the above procedure to merge the roads, we are ready to create a new set of roads from which we can construct
the graph.

CREATE TABLE Roads AS
SELECT osm_id || path AS osm_id, admin_level, bridge, cutting, highway, junction, name,

oneway, operator, ref, route, surface, toll, tracktype, tunnel, width, geom
FROM MergedRoads;

CREATE INDEX Roads_geom_idx ON Roads USING GiST(geom);

Notice that now the attribute osm_id is an array of OSM identifiers (which are big integers), whereas in the previous section it
was a single big integer.

We then proceed as we did in Section 2.11.1 to compute the set of nodes and the set of edges, which we will store now for
comparison purposes into tables Nodes1 and Edges1. We can issue the following queries to compare the two graphs we have
obtained and the one obtained by osm2pgrouting .

SELECT count(*) FROM Ways;
-- 83017
SELECT count(*) FROM Edges;
-- 81073
SELECT count(*) FROM Edges1;
-- 77986
SELECT count(*) FROM Ways_vertices_pgr;
-- 66832
SELECT count(*) FROM Nodes;
-- 45494
SELECT count(*) FROM Nodes1;
-- 42156

Figure 2.10 shows the nodes for the three graphs, those obtained after contracting the graph are shown in black, those before
contraction are shown in blue, and those obtained by osm2pgrouting are shown in red. The figure shows in particular how several
segments of the ring-road around Brussels are merged together since the have the same road type, direction, and maximum speed,
The figure also shows in read a road that was removed since it does not belong to the strongly connected components of the graph.

BerlinMOD Benchmark on MobilityDB 51 / 60

Figure 2.10: Comparison of the nodes obtained by contracting the graph (in black), before contraction (in blue), and those
obtained by osm2pgrouting (in red).

BerlinMOD Benchmark on MobilityDB 52 / 60

Chapter 3

BerlinMOD Benchmark on MobilityDB

BerlinMOD is a standard benchmark for moving object DBMSs. It provides a data generator, pregenerated benchmark data for
different scale factors, and set of queries of two types: 17 range-style queries (called BerlinMOD/R), and 9 nearest-neighbours
queries (called BerlinMOD/NN). The MobilityDB tutorial presented in Chapter 1 and its associated data were based on Berlin-
MOD. However, its purpose was to show the capabilities of MobilityDB. In this chapter, we show how to load pregenerated
BerlinMOD data on MobilityDB and how to express the 17 queries in BerlinMOD/R. Some of these queries were already pre-
sented in Chapter 1.

3.1 Loading the Data

The script for loading pregenerated data is available here.

-- Loads the BerlinMOD data in projected (2D) coordinates with SRID 5676
-- https://epsg.io/5676

DROP FUNCTION IF EXISTS berlinmod_load();
CREATE OR REPLACE FUNCTION berlinmod_load(scale_factor text DEFAULT '0.005',

path text DEFAULT '/usr/local/BerlinMOD/')
RETURNS text AS $$
DECLARE

fullpath text;
BEGIN

fullpath = path || scale_factor || '/';
DROP TABLE IF EXISTS streets;
CREATE TABLE streets (
StreetId integer,
vmax integer,
x1 double precision,
y1 double precision,
x2 double precision,
y2 double precision,
Geom geometry(LineString, 5676));

EXECUTE format('COPY streets(StreetId, vmax, x1, y1, x2, y2) FROM ''%sstreets.csv''
DELIMITER '','' CSV HEADER', fullpath);

UPDATE streets
SET Geom = ST_Transform(ST_SetSRID(ST_MakeLine(ARRAY[ST_MakePoint(x1, y1),
ST_MakePoint(x2, y2)]), 4326), 5676);

DROP TABLE IF EXISTS Points CASCADE;

http://dna.fernuni-hagen.de/secondo/BerlinMOD/BerlinMOD.html
https://docs.mobilitydb.com/data/berlinmod_load.sql

BerlinMOD Benchmark on MobilityDB 53 / 60

CREATE TABLE Points (
PointId integer,
PosX double precision,
PosY double precision,
Geom geometry(Point, 5676));

EXECUTE format('COPY Points(PointId, PosX, PosY) FROM ''%spoints.csv''
DELIMITER '','' CSV HEADER', fullpath);

UPDATE Points
SET Geom = ST_Transform(ST_SetSRID(ST_MakePoint(PosX, PosY), 4326), 5676);

CREATE INDEX Points_geom_idx ON Points USING gist(Geom);

CREATE VIEW Points1(PointId, PosX, PosY, Geom) AS
SELECT PointId, PosX, PosY, Geom
FROM Points
LIMIT 10;

DROP TABLE IF EXISTS RegionsInput CASCADE;
CREATE TABLE RegionsInput (
RegionId integer,
SegNo integer,
XStart double precision,
YStart double precision,
XEnd double precision,
YEnd double precision);

EXECUTE format('COPY RegionsInput(RegionId, SegNo, XStart, YStart, XEnd, YEnd)
FROM ''%sregions.csv'' DELIMITER '','' CSV HEADER', fullpath);

DROP TABLE IF EXISTS Regions CASCADE;
CREATE TABLE Regions (
RegionId integer,
Geom Geometry(Polygon, 5676));

INSERT INTO Regions (RegionId, Geom)
WITH RegionsSegs AS (
SELECT RegionId, SegNo, ST_Transform(ST_SetSRID(St_MakeLine(

ST_MakePoint(XStart, YStart), ST_MakePoint(XEnd, YEnd)), 4326), 5676) AS Geom
FROM RegionsInput)

SELECT RegionId, ST_Polygon(ST_LineMerge(ST_Union(Geom ORDER BY SegNo)), 5676) AS Geom
FROM RegionsSegs
GROUP BY RegionId;

CREATE INDEX Regions_geom_idx ON Regions USING gist(Geom);

CREATE VIEW Regions1(RegionId, Geom) AS
SELECT RegionId, Geom
FROM Regions
LIMIT 10;

DROP TABLE IF EXISTS Instants CASCADE;
CREATE TABLE Instants (
InstantId integer,
Instant timestamptz);

EXECUTE format('COPY Instants(InstantId, Instant) FROM ''%sinstants.csv''
DELIMITER '','' CSV HEADER', fullpath);

CREATE INDEX Instants_instant_btree_idx ON Instants USING btree(instant);

CREATE VIEW Instants1(InstantId, Instant) AS
SELECT InstantId, Instant
FROM Instants
LIMIT 10;

BerlinMOD Benchmark on MobilityDB 54 / 60

DROP TABLE IF EXISTS Periods CASCADE;
CREATE TABLE Periods (
PeriodId integer,
BeginP timestamp,
EndP timestamp,
Period period);

EXECUTE format('COPY Periods(PeriodId, BeginP, EndP) FROM ''%speriods.csv''
DELIMITER '','' CSV HEADER', fullpath);

UPDATE Periods
SET Period = period(BeginP,EndP);

CREATE INDEX Periods_Period_gist_idx ON Periods USING gist(Period);

CREATE VIEW Periods1(PeriodId, BeginP, EndP, Period) AS
SELECT PeriodId, BeginP, EndP, Period
FROM Periods
LIMIT 10;

DROP TABLE IF EXISTS Vehicles CASCADE;
CREATE TABLE Vehicles (
VehId integer PRIMARY KEY,
Licence varchar(32),
Type varchar(32),
Model varchar(32));

EXECUTE format('COPY Vehicles(VehId, Licence, Type, Model) FROM ''%svehicles.csv''
DELIMITER '','' CSV HEADER', fullpath);

DROP TABLE IF EXISTS Licences CASCADE;
CREATE TABLE Licences (
VehId integer PRIMARY KEY,
LicenceId integer,
Licence varchar(8));

EXECUTE format('COPY Licences(Licence, LicenceId) FROM ''%slicences.csv''
DELIMITER '','' CSV HEADER', fullpath);

UPDATE Licences Q
SET VehId = (SELECT C.VehId FROM Vehicles C WHERE C.Licence = Q.Licence);

CREATE INDEX Licences_VehId_idx ON Licences USING btree(VehId);

CREATE VIEW Licences1(LicenceId, Licence, VehId) AS
SELECT LicenceId, Licence, VehId
FROM Licences
LIMIT 10;

CREATE VIEW Licences2(LicenceId, Licence, VehId) AS
SELECT LicenceId, Licence, VehId
FROM Licences
LIMIT 10 OFFSET 10;

DROP TABLE IF EXISTS TripsInput CASCADE;
CREATE TABLE TripsInput (
VehId integer,
TripId integer,
TStart timestamp without time zone,
TEnd timestamp without time zone,
XStart double precision,
YStart double precision,
XEnd double precision,
YEnd double precision,
Geom geometry(LineString));

EXECUTE format('COPY TripsInput(VehId, TripId, TStart, TEnd, XStart, YStart, XEnd, YEnd)
FROM ''%strips.csv'' DELIMITER '','' CSV HEADER', fullpath);

BerlinMOD Benchmark on MobilityDB 55 / 60

UPDATE TripsInput
SET Geom = ST_Transform(ST_SetSRID(ST_MakeLine(ARRAY[ST_MakePoint(XStart, YStart),
ST_MakePoint(XEnd, YEnd)]), 4326), 5676);

DROP TABLE IF EXISTS TripsInputInstants;
CREATE TABLE TripsInputInstants AS (
SELECT VehId, TripId, TStart, XStart, YStart,
ST_Transform(ST_SetSRID(ST_MakePoint(XStart, YStart), 4326), 5676) as Geom

FROM TripsInput
UNION ALL
SELECT T1.VehId, T1.TripId, T1.TEnd, T1.XEnd, T1.YEnd,
ST_Transform(ST_SetSRID(ST_MakePoint(T1.XEnd, T1.YEnd), 4326), 5676) as Geom

FROM TripsInput T1 INNER JOIN (
SELECT VehId, TripId, max(TEnd) as MaxTend
FROM TripsInput
GROUP BY VehId, TripId

) T2 ON T1.VehId = T2.VehId AND T1.TripId = T2.TripId AND T1.TEnd = T2.MaxTend);
ALTER TABLE TripsInputInstants ADD COLUMN inst tgeompoint;
UPDATE TripsInputInstants
SET inst = tgeompoint_inst(Geom, TStart);

DROP TABLE IF EXISTS Trips CASCADE;
CREATE TABLE Trips (
TripId integer PRIMARY KEY,
VehId integer NOT NULL,
Trip tgeompoint,
Traj geometry,
PRIMARY KEY (VehId, TripId),
FOREIGN KEY (VehId) REFERENCES Vehicles(VehId));

INSERT INTO Trips
SELECT VehId, TripId, tgeompoint_seq(array_agg(inst ORDER BY TStart))
FROM TripsInputInstants
GROUP BY VehId, TripId;
UPDATE Trips
SET Traj = trajectory(Trip);

CREATE INDEX Trips_VehId_idx ON Trips USING btree(VehId);
CREATE INDEX Trips_gist_idx ON Trips USING gist(trip);

DROP VIEW IF EXISTS Trips1;
CREATE VIEW Trips1 AS
SELECT * FROM Trips LIMIT 100;

-- Drop temporary tables
DROP TABLE RegionsInput;
DROP TABLE TripsInput;
DROP TABLE TripsInputInstants;

RETURN 'The End';
END;
$$ LANGUAGE 'plpgsql';

The script above creates a procedure to load pregenerated BerlinMOD data (in CSV format and WGS84 coordinates) at various
scale factors. The procedure has two parameters: the scale factor and the directory where the CSV files are located. It supposes by
default that the scale factor is 0.005 and that the CSV files are located in the directory /usr/local/BerlinMOD/<scale
factor>/. Notice that the procedure creates GiST indexes for the tables. Alternatively, SP-GiST indexes could be used. The
procedure can be called, for example, as follows.

SELECT berlinmod_load('0.05');

BerlinMOD Benchmark on MobilityDB 56 / 60

3.2 Loading the Data in Partitioned Tables

As we discussed in Chapter 1, partioning allows one to split a large table into smaller physical pieces. We show next how to
modify the scripts given in the previous section to take advantage of partioning. We will partition the Trips table by date
using list partitioning, where each partitition will contain all the trips that start at a particular date. We will use the procedure
create_partitions_by_date shown in Chapter 1 for automatically creating the partitions according to the date range of
the corresponding scale factor.

[...]
DROP TABLE IF EXISTS TripsInput CASCADE;
CREATE TABLE TripsInput (

VehId integer,
TripId integer,
TripDate date,
TStart timestamp without time zone,
TEnd timestamp without time zone,
XStart double precision,
YStart double precision,
XEnd double precision,
YEnd double precision,
Geom geometry(LineString));

EXECUTE format('COPY TripsInput(VehId, TripId, TStart, TEnd, XStart, YStart, XEnd, YEnd)
FROM ''%strips.csv'' DELIMITER '','' CSV HEADER', fullpath);
UPDATE TripsInput
SET Geom = ST_Transform(ST_SetSRID(ST_MakeLine(ARRAY[ST_MakePoint(XStart, YStart),

ST_MakePoint(XEnd, YEnd)]), 4326), 5676);
UPDATE TripsInput T1
SET TripDate = T2.TripDate
FROM (SELECT DISTINCT TripId, date_trunc('day', MIN(TStart) OVER

(PARTITION BY TripId)) AS TripDate FROM TripsInput) T2
WHERE T1.TripId = T2.TripId;
[...]
DROP TABLE IF EXISTS Trips CASCADE;
CREATE TABLE Trips (

VehId integer NOT NULL,
TripId integer NOT NULL,
TripDate date,
Trip tgeompoint,
Traj geometry,
PRIMARY KEY (VehId, TripId, TripDate),
FOREIGN KEY (VehId) REFERENCES Vehicles (VehId)

) PARTITION BY LIST(TripDate);

-- Create the partitions
SELECT MIN(TripDate), MAX(TripDate) INTO mindate, maxdate FROM TripsInputInstants;
PERFORM create_partitions_by_date('Trips', mindate, maxdate);

INSERT INTO Trips(VehId, TripId, TripDate, Trip)
SELECT VehId, TripId, TripDate, tgeompoint_seq(array_agg(inst ORDER BY TStart))
FROM TripsInputInstants
GROUP BY VehId, TripId, TripDate;
UPDATE Trips
SET Traj = trajectory(Trip);

CREATE INDEX Trips_VehId_idx ON Trips USING btree(VehId);
CREATE UNIQUE INDEX Trips_pkey_idx ON Trips USING btree(VehId, TripId, TripDate);
CREATE INDEX Trips_gist_idx ON Trips USING gist(trip);
[...]

BerlinMOD Benchmark on MobilityDB 57 / 60

With respect to the script given in the previous section, we need to add an additional column TripDate to the tables TripsInput,
TripsInputInstants (not shown), and Trips that will be used for partitioning.

3.3 BerlinMOD/R Queries

The script for querying BerlinMOD data loaded in MobilityDB with the BerlinMOD/R queries is available here.

1. What are the models of the vehicles with licence plate numbers from Licences?

SELECT DISTINCT L.Licence, C.Model AS Model
FROM Vehicles C, Licences L
WHERE C.Licence = L.Licence;

2. How many vehicles exist that are passenger cars?

SELECT COUNT (Licence)
FROM Vehicles C
WHERE Type = 'passenger';

3. Where have the vehicles with licences from Licences1 been at each of the instants from Instants1?

SELECT DISTINCT L.Licence, I.InstantId, I.Instant AS Instant,
valueAtTimestamp(T.Trip, I.Instant) AS Pos

FROM Trips T, Licences1 L, Instants1 I
WHERE T.VehId = L.VehId AND valueAtTimestamp(T.Trip, I.Instant) IS NOT NULL
ORDER BY L.Licence, I.InstantId;

4. Which vehicles have passed the points from Points?

SELECT DISTINCT P.PointId, P.Geom, C.Licence
FROM Trips T, Vehicles C, Points P
WHERE T.VehId = C.VehId AND T.Trip && P.Geom AND
ST_Intersects(trajectory(T.Trip), P.Geom)

ORDER BY P.PointId, C.Licence;

5. What is the minimum distance between places, where a vehicle with a licence from Licences1 and a vehicle with a
licence from Licences2 have been?

SELECT L1.Licence AS Licence1, L2.Licence AS Licence2,
MIN(ST_Distance(trajectory(T1.Trip), trajectory(T2.Trip))) AS MinDist

FROM Trips T1, Licences1 L1, Trips T2, Licences2 L2
WHERE T1.VehId = L1.VehId AND T2.VehId = L2.VehId AND T1.VehId < T2.VehId
GROUP BY L1.Licence, L2.Licence
ORDER BY L1.Licence, L2.Licence;

6. What are the pairs of trucks that have ever been as close as 10m or less to each other?

https://docs.mobilitydb.com/data/berlinmod_queries.sql

BerlinMOD Benchmark on MobilityDB 58 / 60

SELECT DISTINCT C1.Licence AS Licence1, C2.Licence AS Licence2
FROM Trips T1, Vehicles C1, Trips T2, Vehicles C2
WHERE T1.VehId = C1.VehId AND T2.VehId = C2.VehId AND
T1.VehId < T2.VehId AND C1.Type = 'truck' AND C2.Type = 'truck' AND
T1.Trip && expandSpatial(T2.Trip, 10) AND
tdwithin(T1.Trip, T2.Trip, 10.0) ?= true

ORDER BY C1.Licence, C2.Licence;

7. What are the licence plate numbers of the passenger cars that have reached the points from Points first of all passenger
cars during the complete observation period?

WITH Timestamps AS (
SELECT DISTINCT C.Licence, P.PointId, P.Geom,

MIN(startTimestamp(atValue(T.Trip,P.Geom))) AS Instant
FROM Trips T, Vehicles C, Points1 P
WHERE T.VehId = C.VehId AND C.Type = 'passenger' AND

T.Trip && P.Geom AND ST_Intersects(trajectory(T.Trip), P.Geom)
GROUP BY C.Licence, P.PointId, P.Geom)

SELECT T1.Licence, T1.PointId, T1.Geom, T1.Instant
FROM Timestamps T1
WHERE T1.Instant <= ALL (
SELECT T2.Instant
FROM Timestamps T2
WHERE T1.PointId = T2.PointId)

ORDER BY T1.PointId, T1.Licence;

8. What are the overall travelled distances of the vehicles with licence plate numbers from Licences1 during the periods
from Periods1?

SELECT L.Licence, P.PeriodId, P.Period, SUM(length(atPeriod(T.Trip, P.Period))) AS Dist
FROM Trips T, Licences1 L, Periods1 P
WHERE T.VehId = L.VehId AND T.Trip && P.Period
GROUP BY L.Licence, P.PeriodId, P.Period
ORDER BY L.Licence, P.PeriodId;

9. What is the longest distance that was travelled by a vehicle during each of the periods from Periods?

WITH Distances AS (
SELECT P.PeriodId, P.Period, T.VehId, SUM(length(atPeriod(T.Trip, P.Period))) AS Dist
FROM Trips T, Periods P
WHERE T.Trip && P.Period
GROUP BY P.PeriodId, P.Period, T.VehId)

SELECT PeriodId, Period, MAX(Dist) AS MaxDist
FROM Distances
GROUP BY PeriodId, Period
ORDER BY PeriodId;

10. When and where did the vehicles with licence plate numbers from Licences1 meet other vehicles (distance < 3m) and
what are the latter licences?

WITH Values AS (
SELECT DISTINCT L1.Licence AS QueryLicence, C2.Licence AS OtherLicence,

atPeriodSet(T1.Trip, getTime(atValue(tdwithin(T1.Trip, T2.Trip, 3.0), TRUE))) AS ←↩
Pos

BerlinMOD Benchmark on MobilityDB 59 / 60

FROM Trips T1, Licences1 L1, Trips T2, Licences2 C2
WHERE T1.VehId = L1.VehId AND T2.VehId = C2.VehId AND T1.VehId < T2.VehId AND

expandSpatial(T1.Trip, 3) && expandSpatial(T2.Trip, 3)
dwithin(T1.Trip, T2.Trip, 3.0))

SELECT QueryLicence, OtherLicence, array_agg(Pos ORDER BY startTimestamp(Pos)) AS Pos
FROM Values
GROUP BY QueryLicence, OtherLicence
ORDER BY QueryLicence, OtherLicence;

11. Which vehicles passed a point from Points1 at one of the instants from Instants1?

SELECT P.PointId, P.Geom, I.InstantId, I.Instant, C.Licence
FROM Trips T, Vehicles C, Points1 P, Instants1 I
WHERE T.VehId = C.VehId AND T.Trip @> STBOX(P.Geom, I.Instant) AND
valueAtTimestamp(T.Trip, I.Instant) = P.Geom

ORDER BY P.PointId, I.InstantId, C.Licence;

12. Which vehicles met at a point from Points1 at an instant from Instants1?

SELECT DISTINCT P.PointId, P.Geom, I.InstantId, I.Instant,
C1.Licence AS Licence1, C2.Licence AS Licence2

FROM Trips T1, Vehicles C1, Trips T2, Vehicles C2, Points1 P, Instants1 I
WHERE T1.VehId = C1.VehId AND T2.VehId = C2.VehId AND T1.VehId < T2.VehId AND
T1.Trip @> STBOX(P.Geom, I.Instant) AND T2.Trip @> STBOX(P.Geom, I.Instant) AND
valueAtTimestamp(T1.Trip, I.Instant) = P.Geom AND
valueAtTimestamp(T2.Trip, I.Instant) = P.Geom

ORDER BY P.PointId, I.InstantId, C1.Licence, C2.Licence;

13. Which vehicles travelled within one of the regions from Regions1 during the periods from Periods1?

SELECT DISTINCT R.RegionId, P.PeriodId, P.Period, C.Licence
FROM Trips T, Vehicles C, Regions1 R, Periods1 P
WHERE T.VehId = C.VehId AND T.trip && STBOX(R.Geom, P.Period) AND
ST_Intersects(trajectory(atPeriod(T.Trip, P.Period)), R.Geom)

ORDER BY R.RegionId, P.PeriodId, C.Licence;

14. Which vehicles travelled within one of the regions from Regions1 at one of the instants from Instants1?

SELECT DISTINCT R.RegionId, I.InstantId, I.Instant, C.Licence
FROM Trips T, Vehicles C, Regions1 R, Instants1 I
WHERE T.VehId = C.VehId AND T.Trip && STBOX(R.Geom, I.Instant) AND
ST_Contains(R.Geom, valueAtTimestamp(T.Trip, I.Instant))

ORDER BY R.RegionId, I.InstantId, C.Licence;

15. Which vehicles passed a point from Points1 during a period from Periods1?

SELECT DISTINCT PO.PointId, PO.Geom, PR.PeriodId, PR.Period, C.Licence
FROM Trips T, Vehicles C, Points1 PO, Periods1 PR
WHERE T.VehId = C.VehId AND T.Trip && STBOX(PO.Geom, PR.Period) AND
ST_Intersects(trajectory(atPeriod(T.Trip, PR.Period)),PO.Geom)

ORDER BY PO.PointId, PR.PeriodId, C.Licence;

BerlinMOD Benchmark on MobilityDB 60 / 60

16. List the pairs of licences for vehicles, the first from Licences1, the second from Licences2, where the corresponding
vehicles are both present within a region from Regions1 during a period from QueryPeriod1, but do not meet each
other there and then.

SELECT P.PeriodId, P.Period, R.RegionId, L1.Licence AS Licence1, L2.Licence AS Licence2
FROM Trips T1, Licences1 L1, Trips T2, Licences2 L2, Periods1 P, Regions1 R
WHERE T1.VehId = L1.VehId AND T2.VehId = L2.VehId AND L1.Licence < L2.Licence AND
T1.Trip && STBOX(R.Geom, P.Period) AND T2.Trip && STBOX(R.Geom, P.Period) AND
ST_Intersects(trajectory(atPeriod(T1.Trip, P.Period)), R.Geom) AND
ST_Intersects(trajectory(atPeriod(T2.Trip, P.Period)), R.Geom) AND
tintersects(atPeriod(T1.Trip, P.Period), atPeriod(T2.Trip, P.Period)) %= FALSE

ORDER BY PeriodId, RegionId, Licence1, Licence2;

17. Which point(s) from Points have been visited by a maximum number of different vehicles?

WITH PointCount AS (
SELECT P.PointId, COUNT(DISTINCT T.VehId) AS Hits
FROM Trips T, Points P
WHERE ST_Intersects(trajectory(T.Trip), P.Geom)
GROUP BY P.PointId)

SELECT PointId, Hits
FROM PointCount AS P
WHERE P.Hits = (SELECT MAX(Hits) FROM PointCount);

	MobilityDB Tutorial
	Installation
	Loading the Data
	Loading the Data in Partitioned Tables
	Exploring the Data
	Querying the Data
	Range Queries
	Temporal Aggregate Queries
	Distance Queries
	Nearest-Neighbor Queries

	Generating Realistic Trajectory Datasets
	Introduction
	Contents
	Tools and Data
	Quick Start
	Exporting the Generated Data
	Exploring the Generated Data
	Understanding the Generation Process
	Customizing the Generator to Your City
	Tuning the Generator Parameters
	Changing the Simulation Scenario
	Creating a Graph from Input Data
	Creating the Graph
	Linear Contraction of the Graph

	BerlinMOD Benchmark on MobilityDB
	Loading the Data
	Loading the Data in Partitioned Tables
	BerlinMOD/R Queries

