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ABSTRACT
In this paper we build, implement and analyze a spatio-temporal
database describing the fishing activities in the Northern Adri-
atic Sea over four years. The database results from the fusion
of two complementary data sources: trajectories from fishing
vessels (obtained from terrestrial Automatic Identification Sys-
tem, or AIS, data feed) and the corresponding fish catch reports
(i.e., the quantity and type of fish caught). We present all the
phases of the dataset creation, starting from the raw data and
proceeding through data exploration, data cleaning, trajectory
reconstruction and semantic enrichment. Moreover, we formalise
and compare different techniques to distribute the fish caught
by the fishing vessels along their trajectories. We implement the
database with MobilityDB, an open source geospatial trajectory
data management and analysis platform. Subsequently, guided
by our ecological experts, we perform some analyses on the re-
sulting spatio-temporal database, with the goal of mapping the
fishing activities on some key species, highlighting all the in-
teresting information and inferring new knowledge that will be
useful for fishery management.

1 INTRODUCTION
The Northern Adriatic Sea area is one of the most exploited areas
of the Mediterranean Sea, causing an over-exploitation of the
fish resources. Having a clear representation and understanding
of the main factors driving such phenomenon is of paramount
importance both for ecologists and for local policy makers that,
together, could use such information for the development of ef-
fective fishery management plans, able to make fishing activities
sustainable and ensure a productive and healthy ecosystem.

Some interesting objectives relative to the sea monitoring in
the Adriatic Sea are:

• improving the knowledge of the fishing activities in the
Northern and Central Adriatic Sea,

• evaluating the effectiveness of the current fishery man-
agements, and

• detecting the spatial distribution of commercial fishery
catches.
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Our aim in this paper is to build, implement and analyze a spatio-
temporal database for gaining a sound knowledge about the
fishing activities in the Northern Adriatic basin and trying to
address the above matters. To accomplish this task, we start from
two complementary data sources covering a time period of four
years, from January 2015 to December 2018. The first data source
is the set of terrestrial Automatic Identification System (AIS) data,
i.e., the AIS data sent by ships and received by ground stations on
the Italian coast of Northern Adriatic sea. In particular, we focus
on the AIS data of the fishing vessels. The second data source
is the fish catch reports of the Chioggia fish market, which is
the primary market of the Northern Adriatic basin. Such reports
contain the quantity and type of fish caught by all vessels selling
their landings at the Chioggia fish market.

Similar data have been used in [1] to develop early results
on the use of machine learning techniques to predict the future
Catch Per Unit Effort (CPUE), an indicator of fishing resources
exploitation, from the past data of the Northern Adriatic sea. The
mentioned work had some limitations, mainly related to the short
temporal horizon – only two years, 2015 and 2016 – of the landing
and AIS data. This, in fact, turned out to be a serious problem
for the application of prediction methods: using the first year for
training and the second one for testing, was not sufficient. The
novel database that originates from the present work, thanks to
the availability of the data sources for two further years, puts
the basis to overcome such limitations and paves the way for a
subsequent favorable application of prediction methods.

We present all the phases of the database creation. Trajecto-
ries are reconstructed by linear interpolation of the raw AIS data.
We first clean the data, then we detect the trips performed by
the fishing vessels and we enrich the resulting trajectories with
additional information concerning the activities and anomalies
occurring during their trips. Moreover, relying on the landing
reports of the Chioggia fish market, we add a further, valuable
semantic aspect to the trajectories which denotes the quantity
of fish caught in each trajectory segment of the fishing vessel.
In order to distribute the total catches along the trajectories we
define two different approaches, which are subsequently put into
action and compared through specific analyses. First, we adopt
the uniform distribution where the catch of a given species is
uniformly distributed along the fishing segments of the corre-
sponding trajectory: each fishing segment is associated with a
portion of the total amount of fish, proportional to its length. The



uniform distribution is clearly a simplification of the reality. We
refined it by considering a weighted distribution, whose underly-
ing idea is that the areas where more vessels are fishing during a
given time period are more likely to have higher catch rates.

In [4], the authors review current research challenges and
trends tied to the integration, management, analysis, and visu-
alization of objects moving at sea. Several strategies have been
proposed to deal with the fusion of heterogeneous ocean data
properly. For example, the paper [13] shows a platform in the
maritime vessel traffic domain for discovering real-time traffic
alerts by querying and reasoning across numerous streams (e.g.,
AIS, weather, ice). The authors use semantic web technologies to
integrate heterogeneous data sources. In [3], the authors propose
a model for integration and analysis of data for vessel movement
in a real-time maritime situation awareness system, also using
semantic web techniques and tools. Unlike the previous meth-
ods, we represent our trajectory data with a semantic model. By
considering data sources such as AIS and landing reports, the
trajectory of every fishing vessel becomes a complex object with
several data dimensions that are contextual to the movement.

Several semantic models for trajectory data have been pro-
posed, such as the stops and moves [7], CONSTANT [2], and
recently MASTER [6]. In this paper we follow the MASTER se-
mantic model which, among the three proposals, is the more
flexible and expressive since it allows for enriching trajectories
with complex objects. We represent the trajectory of fishing
vessels as a multiple aspect trajectory. The AIS data constitute
the sequence of spatio-temporal points. Moreover, the MASTER
model introduces the concept of aspect which consists of “a real-
world fact that is relevant for the trajectory data analysis” [6]. It
distinguishes between volatile aspects — usually associated with
the trajectory points, since they vary during the object movement
— and long term aspects — which do not change during an entire
trajectory, and hence they are associated with the whole trajec-
tory. For instance, for vessel trajectories, the speed is a volatile
aspect, whereas the fishing gear type is a long term aspect.

We also provide a prototype implementation of our spatio-
temporal database based on MobilityDB [15], an open source
geospatial trajectory data management and analysis platform,
specifically developed to support the representation and the anal-
ysis of moving objects. On the one hand, the implementation in
MobilityDB allows us to perform various analyses on the dataset
and assess the appropriateness of the conceptual framework. On
the other hand, it reveals the potentialities of MobilityDB for the
reconstruction and management of semantic trajectories. In fact,
the system offers temporal types that are suited to model points
changing their position along a time period. It also provides a lot
of spatio-temporal operators to handle trajectories, e.g for getting
the position and the associated annotations of a trajectory at a
certain time instant, or checking topological relations or comput-
ing the distance between trajectories. It supports also the GiST
(Generalized Search Tree) and SP-GiST (Space-Partition GiST)
indexes, which can be used for accelerating spatial, temporal and
spatio-temporal queries. Finally, trajectories can be visualized
by traditional tools such as QGIS [11], an Open Source GIS that
supports viewing, editing, and analysis of geospatial data.

The spatio-temporal database is used for analysing some phe-
nomena of interest. First, we check the AIS coverage and we de-
tect areas where there are transmission problems. Then, guided
by our ecological experts, we map the fishing activities on some
key species, highlighting all the interesting information and infer-
ring new knowledge that will be useful for fishery management.

The analyses show that spatialising the distribution of catches
allows one to single out the fishing grounds and their seasonal
and annual variation. This can be useful for the explanation of the
fishermen behaviour, as well as to better understand the seasonal
migration of the target species.

In summary, the main contributions of the paper are: (i) the
use of MobilityDB, a database platform which is proved to be
particularly suited for creating and analysing semantic trajec-
tories; (ii) the development of a case study concerning fishing
activities based on real and heterogeneous datasets, with the
proposal of different approaches for distributing catches along
the trajectories; (iii) the execution of various qualitative analyses,
proposed and assessed by our ecological experts, for detecting
spatial and temporal patterns of the fishing activities.

The paper is organised as follows: Section 2 describes the
trajectory reconstruction and enrichment and the creation of
a spatio-temporal database by means of MobilityDB. Section 3
reports and discusses the results of some specific analyses per-
formed with MobilityDB on the obtained database. In particular,
we show the usefulness of recording and visualizing possible
anomalies of the trajectories as well as how to take advantage
of the catches distribution for gaining new knowledge on key
species in the area. Finally, we draw some concluding remarks in
Section 4.

2 FROM RAW DATA TO MULTIPLE ASPECT
TRAJECTORIES

In this section we illustrate the various ingredients and steps
we followed to produce a spatio-temporal database of fishing
vessels’ trajectories in the Northern Adriatic sea, enriched with
landing data from the Chioggia market. We start by describing
the data sources of our case study, that is, the terrestrial AIS
data of the Northern Adriatic sea, and the landing reports of
the Chioggia fish market. Next, we explain how trajectories can
be reconstructed by linear interpolation of the raw AIS data. In
this step, we clean the data, we detect the trips performed by
the fishing vessels and we enrich the resulting trajectories with
additional information concerning the activities and anomalies
occurring during the trips. Then we illustrate how to assign
landing reports to trajectories and we formalise the two different
techniques to distribute the fish catches along the trajectories.
Finally, we give some details of the implementation by showing
the advantages of using MobilityBD as database to store and
analyse trajectories.

The overall view of the process is depicted in Fig. 1: Starting
from the raw terrestrial AIS data of the fishing vessels and from
the landing reports of the Chioggia’s market, we build up on
top of MobilityDB a spatio-temporal database of multiple aspect
trajectories that enables us to perform analyses on the spatio-
temporal and semantic features of the trajectories.

2.1 Data sources
Automatic Identification System (AIS). AIS raw data, provided

by the Italian Coast Guard, were obtained for the trawl fishing
vessels operating in the Northern Adriatic Sea from January 2015
until December 2018. A total of 70 (2015), 77 (2016), 82 (2017)
and 81 (2018) trawlers, with a length overall above 15m, were
taken into consideration in this study: in particular, small and
large bottom otter trawl (SOTB and LOTB), Rapido, one specific
kind of beam trawl (RAP), and midwater pair trawl (PTM). The
identification of the vessels was performed by matching the data



Figure 1: Bird’s eye view of the process: data sources, reconstruction and enrichment of trajectories and data analysis

Year Number of vessels Number of transactions
2015 71 64180
2016 79 70017
2017 80 71716
2018 76 72165
Table 1: Dimension of the Landing dataset

present in the AIS (MMSI code, vessel name and the call sign)
with those of the European Fleet Register, which supplies specific
information on the vessels (i.e., primary and secondary gear,
length overall, gross tonnage, etc.). All the data given by the
AIS (i.e., data position, speed, time, MMSI) were used to identify
the fishing tracks and analyze the fishing activities (fishing, not
fishing).

Daily landing reports. Landing dataset was obtained from the
Chioggia’s Fish Market, whose harbor hosts one of the main
fishery fleets of the Adriatic Sea. This dataset consists of daily
landings (catch amounts in kilogram) for 104 commercial species
caught during four years, from January 2015 to December 2018 in
the Northern Adriatic Sea. The records pertain around 80 fishing
vessels, and contains a total of 278078 transactions over the four
years, as detailed in Table 1.

2.2 Trajectory reconstruction and
enrichment

Trajectories are reconstructed by linear interpolation of the raw
AIS data. While performing the reconstruction raw data are
cleaned: all the points implying movements that are not physi-
cally feasible due to a maximum possible boat speed are removed.
Next, in order to organize the data into distinct trajectories fol-
lowed by the fishing boats, we apply two criteria: a new trip
begins 𝑎) when the vessel is inside a port area and there is no
transmission for longer than a fixed time, or 𝑏) there is an AIS

Year AIS data Number of trajectories
2015 29757601 11280
2016 38519864 11130
2017 21247207 35335
2018 25098120 9549
Table 2: Raw AIS data vs trajectories

datum outside a port area and the immediate previous AIS datum
is inside a port area and the time period between the two AIS
data is greater than 20 minutes. The first condition corresponds
to the fact that the vessel ends a trip, it switches off the AIS, it
is docked at the port and after a while it starts a new trip. The
second one corresponds to a situation in which a vessel leaves
out of the port and then it starts transmitting when it is outside
the port (20 minutes is the minimum time a vessel takes to leave
the port). A detailed analysis reveals that some fishing vessels,
after entering the port area at the end of a trip, continue to trans-
mit their position. In this way, none of the above criteria is met.
This causes a wrong trip reconstruction in which two or more
trips are considered as a unique trip with a duration of several
days. Hence, to avoid this phenomena we remove the AIS data
transmitted inside the port when the vessel returns to a port. In
Table 2 we report the dimension of the original AIS datasets and
the resulting number of trajectories.

A trajectory, resulting from the reconstruction, is a sequence
of segments, obtained by connecting consecutive AIS points. It
is enriched with the following information:

• MMSI, boat identifier;
• trip duration (in hours);
• trip length (in meters);
• total time of fishing activity (in hours);
• total length of the fishing activity (in meters);
• date and time of the trip departure and conclusion;



ID Description
0 normal trip
1 no transmission for more than 30 minutes outside a port area
2 trip always inside a port area
3 trip duration exceeds the 24 hours.

Table 3: Values of the anomaly attribute

ID Activity description
0 in port
1 exiting from port
2 entering to port
3 fishing
4 navigation.

Table 4: Values of the activity attribute

• total number of segments with more than 30 minutes be-
tween two consecutive AIS transmissions;

• anomaly, a code specifying whether the trip presents an
anomaly or not and the kind of anomaly.

The anomaly attribute highlights some strange behaviour of the
fishing vessel. Possible anomalies are:

• the time interval between two consecutive AIS data is
longer than 30 minutes outside the port, suggesting some
points could be missing (anomaly is set to 1);

• a boat remains inside a port area for the whole trip (anom-
aly is set to 2);

• the duration of the trip exceeds the 24 hours (anomaly is
set to 3);

If none of the above cases occurs, the trip is considered as normal
and anomaly is set to 0. Table 3 summarizes the possible values
of the anomaly attribute.

It is worth noting that through theMMSI, we can obtain further
information on the vessel, such as its name and the fishing gear.
Each segment in the trajectory is in turn annotated with:

• speed;
• position of the segment with respect to the port areas;
• activity of the boat within the segment;
• length of the segment;
• time spent in the segment;
• transmission.

The activity attribute describes what the vessel is doing ac-
cording to Table 4. The in port, exiting from port and entering to
port situations can be deduced from the position of the extremes
of the segment w.r.t. the port area. If none of the previous cases
applies, the fishing or navigation activities are established on
the basis of the average speed of the boat. More precisely, if the
average speed is in the range of the fishing speed of the gear
the boat is equipped with, the boat is assumed to be in a fishing
phase; otherwise, it is assumed to be in a navigation phase. The
considered gears and their minimum and maximum speed during
the fishing activity are reported in Table 5.

The attribute transmission records whether the end points of
the segment have a time distance greater than 30 minutes. If this
happens the attribute is set to 1, otherwise to 0. As explained
above, the presence of segments with transmission set to 1 allows
for the detection of an anomalous behaviour of the trajectory.

These trajectories are modeled as a multiple aspect trajectory,
following MASTER model [6]. Actually, as minimum granular-
ity to attach semantic information, we do not consider a single

Gear description ID min. speed max. speed
Small bottom otter trawl SOTB 3.704 8.334
Large bottom otter trawl LOTB 3.704 8.334
Pelagic pair trawl PTM 3.704 10.186
Rapido RAP 7.408 12.964

Table 5: Gears and their minimum and maximum fishing
speed (in km/h)

spatio-temporal point as in the original MASTER model, but
segments. This is motivated by the fact that we want to high-
light the presence of homogeneous trajectory portions, which
are the appropriate granularity level for our analyses. According
to the MASTER model classification, the information listed above
can be classified as long-term aspects, (those associated with the
full trajectory), and volatile aspects (those associated with the
segments).

By using the MASTER model we are able to represent different
aspects of our trajectories in a uniform and simple way. Moreover,
this representation allows us to perform complex queries merging
spatial, temporal and semantic features. In the rest of the paper,
we denote by 𝑇 the resulting set of multiple aspect trajectories.

2.3 Catch distribution
We next describe how to merge the trajectories of the fishing
vessels with the daily landing reports provided by the Chioggia
fish market. The latter dataset contains information about each
trading transaction, including the landing date, MMSI of the
seller, the species, and the quantity of fish. Note that we work on
a subset of the set of reconstructed multiple aspect trajectories.
In fact, we exclude from our analysis, fishing vessels that do not
sell their fish in Chioggia, trajectories with anomaly 2, i.e., the
ones that do not leave the port area, and trajectories that do not
have any fishing activity.

In order to perform the merge we need to associate each fish
market transaction with a trajectory of the vessel having the
specified MMSI. To accomplish this task, for each transaction, we
select the vessel trip with the most recent arrival in the port (be-
fore 4 PM of the landing date). Arrivals after 4 PM are associated
with transactions occurring the next day. The quantity (weight)
of fish assigned to a trajectory is called a catch.

In order to distribute the fish associated with a trajectory over
its fishing segments we follow two different approaches:

• uniform distribution, and
• weighted distribution.

In the first case, the catch is uniformly distributed along the
fishing segments of the corresponding trajectory. Each fishing
segment of the trajectory is associated with a fraction of the total
amount of fish, proportional to its length. We consider separately
each species that the fishing vessel caught.

Definition 2.1 (Uniform distribution). Let 𝑡𝑟 be a trajectory and
let catch the record containing the quantities of the different
species associated with the trajectory 𝑡𝑟 . Given a segment 𝑠 be-
longing to 𝑡𝑟 with activity set as fishing and a species 𝑠𝑝 , the
uniform catch for segment 𝑠 and species 𝑠𝑝 is defined as

𝑑𝑈 (𝑠, 𝑠𝑝) = 𝑠 .𝑙𝑒𝑛

𝑡𝑟 .𝑙𝑒𝑛_𝑓 𝑖𝑠ℎ𝑖𝑛𝑔
∗ catch.𝑠𝑝 (1)

where
• tr .len_fishing is the attribute storing the total length of
the fishing activity for the trajectory 𝑡𝑟 ;



• s.len is the length of the segment;
• catch.𝑠𝑝 selects the quantity of a certain species 𝑠𝑝 .

Clearly the assumption of uniform catch distribution is a sim-
plification of reality. We consider also a refinement based on a
so called weighted distribution. The idea is that the areas where
more vessels are fishing, during a given time period, are more
likely to have higher catch rates.

In order to implement this technique, we need to suitably par-
tition the fishing area because it becomes crucial to evaluate the
number of fishing vessels present in a certain zone. We decided
to divide the Northern Adriatic sea into a square grid with 3×3
km cell size. The size has been chosen in agreement with the
environmental scientists based on the dimension of the fishing
vessels and their behaviour during the fishing activity.

The introduction of the grid leads to a further segmentation of
the trajectories. In fact, each segment that spatially crosses one
or more cells of the grid needs to be split into smaller segments
in such a way that each portion is completely inside a single cell.
Moreover, since we deal with a spatio-temporal grid, all segments
spanning over two days are split into two smaller segments by
taking as extra point the interpolated position at midnight.

In order to compute the weighted distribution, we associate a
coefficient to each spatio-temporal cell of the grid.

Definition 2.2 (fishing coefficient). Let 𝑐 be a spatio-temporal
cell and 𝑠𝑝 a species. The fishing coefficient of cell 𝑐 for the species
𝑠𝑝 is defined as follows:

𝛼 (𝑐, 𝑠𝑝) = |{𝑡𝑟 ∈ 𝑇 ↓ 𝑠𝑝 | 𝑡𝑟 ∩ 𝑐 ≠ ∅}|∗
Σ𝑡𝑟 ∈𝑇 ↓𝑠𝑝Σ𝑠∈𝑡𝑟∩𝑐∧s.activiy=fishings.len

(2)

where
• 𝑇 ↓ 𝑠𝑝 is the set of trajectories having a landing report
with the species 𝑠𝑝 ;

• 𝑡𝑟 ∩ 𝑐 returns the intersection between the trajectory 𝑡𝑟
and the cell 𝑐;

• s.activity and s.len are respectively the attributes of seg-
ment 𝑠 storing the activity and the length of the segment.

The coefficient 𝛼 (𝑐, 𝑠𝑝) combines the number of fishing vessels
and the amount of fishing activity they perform in the cell, hence
it provides a measure of the fishing activity in the cell. Note that
the coefficient depends on the species. Hence, for each species
𝑠𝑝 , we select only the trajectories having a landing report for the
given species 𝑠𝑝 .

Since it is natural to expect that vessels will mostly concen-
trate in fishy areas, the intuition is that cells where the fishing
coefficient is higher will have higher catch rates. This leads to
the idea, formalised below, of using such coefficient as a weight
when distributing catches over a trajectory.

Definition 2.3 (Weighted distribution). Let 𝑡𝑟 be a trajectory
and let catch the record containing the quantities of the differ-
ent species associated with the trajectory 𝑡𝑟 . Given a segment 𝑠
belonging to 𝑡𝑟 with activity set as fishing and a species 𝑠𝑝 , the
weighted catch for segment 𝑠 and species 𝑠𝑝 is defined as

𝑑𝑊 (𝑠, 𝑠𝑝) = 𝛼 (s.cell, 𝑠𝑝) ∗ s.len
Σ𝑠′∈𝑡𝑟∧s′.activity=fishing (𝛼 (s′.cell, 𝑠𝑝) ∗ s′.len)

∗catch.sp

(3)
where s.cell is the unique cell the segment 𝑠 belongs to.

When distributing the catch over the segments of the trajec-
tory 𝑡𝑟 , again only segments which are classified as fishing are
considered. The difference is that in this case each segment 𝑠

receives a weight which is proportional not only to the length
s.len of the segment but also to the fishing coefficient 𝛼 (s.cell, 𝑠𝑝)
of the cell the segment belongs to.

2.4 Implementation
To construct and store the set of multiple aspect trajectories,
we used MobilityDB [15], an open source extension to the Post-
greSQL database system [10] and its spatial extension PostGIS [9].
It provides temporal types and spatio-temporal operators that
ease the management of moving objects.

One main feature of MobilityDB is that it offers a construct for
representing the evolution of a value during a sequence of time
instants. The values between successive instants are interpolated
using a linear function. Clearly, this construct perfectly suites
the representation of trajectories, which are reconstructed from a
sequence of spatio-temporal data. In our case, the spatio-temporal
points are the AIS data aggregated on the basis of the trajectory
𝑖𝑑 . We created a set of objects of type tgeompoint, which is a
temporal type modelling a point changing its position along a
time period.

Next, the function trajectory is applied to these objects, and
a geometry value is returned. In this way the trajectory can
be visualized. In our work, for visualizing trajectories and the
result of our analyses, we used QGIS [11], an Open Source GIS
that supports viewing, editing, and analysis of geospatial data.
For instance, Figure 2(left) shows the sequence of AIS data, i.e.,
the sequence of spatio-temporal points, related to the trip of a
fishing boat, whereas Figure 2(center) illustrates the continuous
representation of the same trip obtained by using the MobilityDB
construct. The interpolation is internally implemented by the
system, with the dual advantage of raising the user from this task
and simplifying queries and analyses.

MobilityDB provides a lot of spatio-temporal operators to
handle trajectories. For instance, startTimestamp and endTime-
stamp return respectively the first and last time instant among a
set of time instants and this can be useful to extract the beginning
and ending points of a trajectory; getValue returns a value at
a particular time instant. There are operators to check topologi-
cal relations between trajectories, like tintersects, tdisjoint,
and others to compute distances. Interestingly the results of these
operators are values changing in time. In fact, it can happen that
at certain time periods trajectories enjoy the relations whereas at
other ones they do not, and the distance between the objects can
vary depending on the movement of the objects themselves. For
instance, the user can check whether a fishing vessel respects the
rule that it can fish only at a distance greater than three nautical
miles from the coast and eventually detect where and when the
ban has not been observed.

MobilityBD allows for an easy representation of semantic tra-
jectories where semantic attributes can be modelled as temporal
types. This means that we can model in a single table both the
sequence of spatio-temporal points forming a trajectory and in-
formation associated with the whole trajectory itself, such as
the MMSI of the vessel, the duration and length of the trajectory.
Moreover, a trajectory can be segmented and each segment can
be stored as a temporal type. Even in this case we can add other
attributes modelling features of the segment itself, such as the
speed, the activity, the transmission and the quantity of caught
fish. In Figure 2(right) the different colours describe the activities
of the fishing vessel. They allow the user to immediately detect
where the vessel is fishing and also the shape of the movement.



Figure 2: Trajectory visualisation as a sequence of spatio-temporal points (left), as a continuous function (center), and as
a semantic object where the activity attribute is highlighted (right)

For instance, the figure highlights several circular movements
and the experts have confirmed that they are typical of this kind
of fishing activity.

Finally,MobilityDB provides support for the GiST (Generalized
Search Tree) and SP-GiST (Space-Partition GiST) indexes, which
can be created for table columns of temporal types. We used such
indexes for accelerating spatial, temporal and spatio-temporal
queries.

3 DATA ANALYSIS AND DISCUSSION
In this section we present some analyses performed with Mobili-
tyDB on the obtained spatio-temporal database of the Northern
Adriatic sea.

The first analysis aims at visualizing the regions where there
are transmission problems. We exploit the anomaly attribute
and in particular we investigate trajectories having this attribute
set to 1. In Figure 3 we show for each cell, the percentage of
trajectories that got disconnected from the AIS for a time period
greater than 30 minutes while crossing that cell with respect to
the total number of trajectories passing through the cell. Looking
at Figure 3, it is evident that the no-transmission anomaly has
decreased a lot from 2015 to 2018. In fact, in 2015 the area where
this percentage is over 50% is very large and it covers almost the
whole fishing zone. Instead, in 2018 this phenomenon is localized
in few areas, i.e., close to the coasts and along the territorial
waters borders. Moreover, in 2018 there are also some isolated
cells in the southern part.

The low spatial coverage of AIS is a well-known issue and the
amount of missing data can vary substantially between vessels
as discussed in [12]. Our analysis reveals that data from 2018 are
more reliable and can be useful for detecting areas where the AIS
signal is not received well, like the isolated cells in the southern
portion of the sea area under investigation.

This analysis is an example of how the semantic knowledge
hidden in a single attribute, such as the anomaly attribute, can
be useful to greatly improve the general spatio-temporal knowl-
edge of the domain of interest. On one hand the progressive
low-coverage reduction of AIS data is per se a highly valuable in-
formation for ecologists and policy makers, since this ensures the
reliability of the collected data. On the other hand, the proposed
implementation allows the experts to continuously monitor the
degree of coverage and eventually decide to add further terrestrial
AIS receivers.

The second and third analyses take advantage of the catches
distribution and try to infer some knowledge on key species in

the area. In fact, spatializing the distribution of catches has sev-
eral important applications. For instance, it allows us to obtain
knowledge about the seasonal variation of the fishing grounds
and this, in turn, is useful for explaining the fisherman behaviour,
as well as to better understand the seasonal migration of a tar-
get species. Figure 4 reports the seasonal spatial distribution of
cuttlefish, Sepia officinalis, aggregated by fishing gears (SOTB,
LOTB and RAP) in 2018. Cuttlefish is one of the main target
species of the Adriatic Sea, hence it is an ideal case study for
showing a seasonal migratory behaviour. It is worth noting that
the most productive seasons were autumn and winter, with two
high density areas, one nearer the coast and the other one more
offshore, at the border with the Croatian waters. In spring the
catches resulted more scattered, while in summer the catch area
was more defined and localized closer to the Italian coast. This
is in line with the general ecological knowledge about the be-
haviour of the species, hence, the catches data correctly reflect
cuttlefish seasonal spatial distribution behaviour. Figure 4 reports
also the comparison between the uniform (A) and the weighted
(B) distribution maps of cuttlefish Sepia officinalis in 2018. It is
evident that the maps obtained with the weighted distribution
(B) result more defined, allowing to better identify the fishing
grounds of cuttlefish.

Another important application of the spatial distribution of
catches is the detection of different fishing grounds among years.
As an example, the catches of anchovy, Engraulis encrasicolus,
recorded in winter 2015, 2016, 2017 and 2018 and distributed
according with the weighted distribution are reported in Figure 5.
The maps clearly show how the fishing grounds, and conse-
quently the distribution of anchovies, changed along the years.
In particular, a gradual reduction of the fishing grounds is ob-
served from 2016 to 2018. This is clearly a relevant information
for both ecologists and policy makers: if the fishing ground re-
duction is the result of an over exploitation of the species they
can adopt appropriate countermeasures.

To end up, we would like to point out that these are only a
few examples of the analyses that can be performed by using the
dataset of multiple aspect trajectories. For instance, we can focus
on vessels equipped with a specific fishing gear (i.e., LOTB, SOTB,
RAP and PTM) and determine their fishing grounds and the
corresponding degree of exploitation. This fine-grained analysis
could help to reveal different efficiency degrees of fisheries that, in
turn, could constitute a basis to implement specific management
actions for these activities. Moreover, we can vary our analysis
according to different time periods and consider only certain sea



Figure 3: Spatial distribution of the no-transmission anomaly, years 2015, 2016, 2017 and 2018 (from left to right)

Sepia Officinalis, 2018, Uniform distribution (A)

Sepia Officinalis, 2018, Weighted distribution (B)

Figure 4: Comparison between uniform (A) and weighted (B) distribution of cuttlefish Sepia officinalis, aggregated by
seasons (winter, spring, summer and autumn 2018)

areas. For instance one could focus on protected areas, like the
Pomo Pit or the Sole Sanctuary. We can also select the behaviour
of single trajectories satisfying complex conditions concerning
both their movements and their semantic annotations by using
the operators available in MobilityDB.

4 CONCLUSIONS
In this paper we built, implemented and analysed a spatio-tempo-
ral database of the vessels trajectories in the Northern Adriatic
sea. We started from the terrestrial AIS data of the area of interest
and the fish reports of the main fish market, Chioggia, for the
years 2015, 2016, 2017, 2018. We determined the trajectories and
introduced semantic attributes able to unveil interesting infor-
mation and aspects of the original data themselves. Moreover,



Figure 5: Spatial distribution of anchovy Engraulis encrasicolus in winter, years 2015, 2016, 2017 and 2018 (from left to
right)

we gave a formal definition of two different catch distribution
techniques, the uniform and weighted, with the aim of putting
them at work and comparing their behavior.

Additionally, we implemented the spatio-temporal database
using MobilityDB, thus ensuring a suitable environment for stor-
ing, querying and visualizing trajectories of moving objects.

The ecological experts proposed some analyses on the ob-
tained database. We started with the analysis of the transmission
anomalies – stored as a new semantic feature – that allowed us
to acknowledge a concrete and progressive improvement of the
data completeness in the years 2015-2018, thanks to the growing
use of the AIS transmission systems in the fishing vessels and to
the increasing AIS data receiving coverage.

We proceeded then with the analysis of the two proposed dis-
tribution techniques. It turned out that the weighted distribution
is actually a refinement of the uniform one, able to better define
the fishing ground of the species of interest. Besides, we showed
how the use of semantic trajectories can provide an assessment
of the fishing activities, capturing spatial and temporal patterns.

All these results put the best possible basis for a favorable
application of prediction methods, which is the next step to be
done on the obtained database. In particular, first we would like
to test whether the Random Forest prediction results reported
in [1] improve thanks to the availability of 2017 and 2018 data.
Then, we would like to experiment other prediction techniques,
such as lag variables [14], or modern time series prediction.

Finally, another interesting line of research is to extract fishing
patterns, like the circular one illustrated in Figure 2, or anomaly
behaviour, as investigated in [5, 8].
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