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ABSTRACT

The availability of moving object data that is being collected nowa-

days, and the demand of using them in applications, have generated

the need for spatiotemporal data management systems. MobilityDB

is an open source moving object database system. Its core function

is to eiciently store and query moving object trajectories. It is engi-

neered up from PostgreSQL and PostGIS, providing spatiotemporal

data management via SQL. In order to store and analyze the massive

datasets of trajectories, a scalable version is required. In this paper,

we present a solution to distribute MobilityDB using Citus. Citus is

a PostgreSQL extension for distributed query processing. We report

on the integration architecture, and the types of queries that can

be distributed out of the box. The experiments prove the feasibility

of the solution, and show a signiicant speed up in queries.
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· Information systems→ Database management system en-

gines.
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1 INTRODUCTION

Moving object data is being collected at scale in many domains.

This includes mobility solutions in smart cities [14], crowd manage-

ment [17], air traic control [4], climate change [19], and ethology

studies [15]. This data is characterized by being multidimensional

and big in size. A single sensor generates thousands of observation

per day. Existing big data management systems do not have the

notion of trajectory. It is important to have it as irst class citizen.

This is ofered by moving object database systems.
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MobilityDB1 [23] is an open source extension of PostgreSQL and

PostGIS, which makes it easily adopted in industry and real life

applications. It implements spatiotemporal and temporal database

types inside PostgreSQL, and a rich set of query operations. By

far, MobilityDB is the only SQL database for moving objects. It

is a centralized system that can be run on a single server. It has

features of high performance such as indexes and parallel query

processing over the machine cores. However, the requirements of

big data applications go beyond vertical scalability.

PostgreSQL has a large number of extensions that are maintained

by separate communities. This includes Citus2, which mainly pro-

vides three components inside a PostgreSQL database: sharding,

distributed query planning, and distributed query execution. It thus

enables distributing PostgreSQL databases, allowing for horizontal

scalability. It has been acquired by Microsoft in January 2019 to be

a solution for PostgreSQL managed databases on Azure 3.

As both MobilityDB and Citus are extensions to PostgreSQL, not

forks, they can work together. This paper explores the potential of

their integration. The main questions we aim to answer are: (1) Is it

possible to distribute spatiotemporal query processing by integrat-

ing the two extensions, and do we gain performance?, (2) What are

the queries that can be distributed out of the box?, and (3) What

would be needed to distribute the remaining queries?. This assess-

ment is done analytically, by discussing the architecture of the two

extensions, and empirically by running the BerlinMOD benchmark

[6] of moving object databases on the integrated solution.

2 BACKGROUND

2.1 MobilityDB

MobilityDB [23] deines abstract data types (ADT) for representing

moving objects data, such as tgeompoint to represent the evolution

of a geometry point over time, e.g., a vehicle trajectory, and tfloat

to represent the evolution in time of a loating point number, e.g.,

describing the speed of a vehicle. It basically deines this set of tem-

poral type: {tgeompoint, tgeogpoint, tint, tfloat, tbool, and

ttext}, which are respectively the temporal counterparts of these

PostgreSQL and PostGIS base types:{geometry(point), geography(point),

int, float, bool, and text}.

The abstract representation of such temporal types is a continu-

ous mapping from time into the domain of the base type. Because

computers cannot eiciently process continuous representations,

the so called sequence representation is used [23]. A temporal type

is constructed from a pair of a base type, and a time type. The

time types in MobilityDB are { timestamp, timestampset, period,

1https://github.com/ULB-CoDE-WIT/MobilityDB
2https://www.citusdata.com/
3https://www.citusdata.com/product/hyperscale-citus/

https://doi.org/10.1145/3356999.3365467
https://doi.org/10.1145/3356999.3365467
https://github.com/ULB-CoDE-WIT/MobilityDB
https://www.citusdata.com/
https://www.citusdata.com/product/hyperscale-citus/
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periodset }. Respectively, MobilityDB deines four type construc-

tors: INSTANT, INSTANTS, SEQUENCE, SEQUENCES. A type construc-

tor is a function that constructs data types. The INSTANT type con-

structor receives a base type, and constructs a temporal type that

represents a single pair of a time instant and a value of the base

type. For instance, the type INSTANT(geometry) represents a pair

of a timestamp and a geometry, which can be used to represent the

location and time of a car accident. Similarly, the INSTANTS type

constructor receives a base type and constructs a set of such pairs

with distinct time instants, e.g., representing the four-square check-

ins of one user. Agnate to the time type period, the SEQUENCE type

constructor constructs temporal types that represents continuous

mapping between time instants in the period and values of the base

type, such as the continuous trajectory of a car. In contrast to the

types constructed by INSTANTS, the types constructed by SEQUENCE

imply linear interpolation between the consecutive time instants.

Finally the type constructor SEQUENCES constructs types that rep-

resent a set of such continuous mappings with non-overlapping

and non-adjacent time periods. Figure 1 illustrates the types that

are constructed by the four type constructors, where v@t denotes

a value v of the base type occurring at the time instant t .
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Figure 1: Sequence representation of moving objects

MobilityDB leverages the features of the PostgreSQL and Post-

GIS types. For instance, the timestamp type is time zone aware

(a feature by PostgreSQL), while tgeompoint and tgeogpoint use

the spatial framework provided by PostGIS. The same strategy is

used for implementing the operations. The goal is to maximize the

compatibility between MobilityDB and its underlying platform, so

that it will beneit from the continuous development done by the

community. This is one key enabler to the integration with Citus.

As illustrated in Figure 2, the aforementioned temporal types are

supported by index access methods that extend on the PostgreSQL

generalized search tree GiST, and the space partitioning search

tree SP-GiST. Both indexes are implemented so that they support

spatiotemporal, spatial only, and temporal only queries. They will

share as many dimensions as available in the query argument. The

b-tree index is also extended to support equality searches.

The query optimizer of MobilityDB collects statistics for tem-

poral attributes, to use them in estimating the selectivity of the

diferent query predicates, and selecting the optimal execution plan.

The type analyzer is the function that collects the statistics. The

general idea is to separately collect statistics for the base type, and

for the time type that constitutes the temporal type in question.

It hence reuses the PostgreSQL and PostGIS type analyze func-

tions. Every selection predicate is then associated with a selectivity

estimation function that uses the collected statistics to estimate

the number of tuples that the predicate will return if used irst.

 Data Model
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● timestampsset

spatiotemporal types:
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● tgeogpoint
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Figure 2: MobilityDB Architecture

Similarly, every join predicate is associated with a join estimation

function to estimate the join cardinality.

MobilityDB deines over 2,300 query operations. Section 3 will

list few of them. These operations are polymorphic, that is, their

arguments may be of several types, and the result type depends on

the types of the arguments. The arithmetic operations for instance

have this signature:

+, -, * {tfloat, tint, × {tfloat, tint, → {tfloat, tint}

float, int} float, int }

These operations accept any combination of temporal and non-

temporal numerical arguments, and thus the result is temporal.

Clearly, the arithmetic of non-temporal types are excluded, as these

are readily provided by the underlying DB system. Throughout

the sequel, we will use this notation for deining the operation

signatures, which starts in the left with the operation name, fol-

lowed by the list of arguments, then the result type is placed in the

right. When more than one temporal argument are accepted by an

operation, the result is only deined on the intersection of their time

spans. If the time spans are disjoint, then the result is null.

A major class of temporal operations is obtained by lifting the

operations on non-temporal types, to also accept temporal types.

This concept has been proposed in [11]. The lifting transformation

can be illustrated as:

(LIFT (op)(α , β))(t) = op(α(t), β(t))
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where op denotes a static operation, LIFT(op) denotes its lifted coun-

terpart, and α , β are temporal arguments. Because the arguments

of a lifted operation are temporal types, the result is also a temporal

type. The notation α(t) denote the temporal functions of α , which

yields its value at the given time instant. This equation reads as

follows: sampling the result of a lifted operation at any time instant

t yields the same value that one would get by sampling all the

arguments at t and applying the corresponding static operation

on the samples. For instance, the lifted predicate α > 0, where α

is a tfloat value, yields a tbool that is true over all the time in-

stants/periods during which the value of α is positive, false during

the rest of the deinition time of α , and undeined otherwise.

In addition to lifted operations, MobilityDB deines other classes

of operations including: ETL, aggregations, spatiotemporal, projec-

tion to space and to time, distance, etc. All its types and operations

are available in SQL. It is compatible by default with the PostgreSQL

extensions, because it leverages the PostgreSQL extensiblity fea-

tures, rather than building from scratch.

2.2 Citus

Figure 3 illustrates the distribution architecture ofMobilityDB using

Citus. The hardware part consists of a controller node and multiple

worker nodes. All the nodes have the same stack that consists of

PostgreSQL, PostGIS, MobilityDB, and Citus. The distribution of the

database is managed by Citus through the controller node. Building

a cluster maps to iteratively adding worker nodes, i.e, SELECT *

from master_add_node(node-name, port). Citus distributes the

work over the cores of the worker nodes. Additional worker nodes

can be added during the run of the cluster without down time.

Big tables can then be sharded over the worker nodes using the

create_distributed_table function, which expects a sharding

key. The tuples are then routed by the controller to workers, where

the data gets physically stored. The controller node maintains light

weight metadata about the sharding so that it can distribute the

queries, while the data storage and most of the query execution

happen in the workers. Citus assigns shards to co-location groups,

which ensure that rows with the same shard key are on the same

worker node. It typically creates a number of shards that is more

than the number of worker cores. Reference tables are replicated

to all workers, using the function create_reference_table, such

that they can be joined with distributed tables on any attribute.

Citus also replicates the shards over workers to account for node

failures (i.e., the gray blocks in Figure 3).

All queries issued to the cluster are executed via the coordinator.

The coordinator generates a distributed query plan, where the user

query gets partitioned into smaller query fragments that can be

run independently on shards. The coordinator then assigns and

monitors the execution on the workers. In case of a node failure,

it re-assigns the execution to some replica. Finally, it merges their

results, and returns the inal result to the user.

The query processing engine in Citus consists of two compo-

nents: the distributed query planner and multiple distributed query

executors. PostgreSQL allows to extend the query planner via hooks,

so that extension planners can be invoked before and after, in com-

munication with the PostgreSQL planner. Citus uses this feature

to implement its distributed query planner. It distinguishes four

Figure 3: Distributed MobilityDB Cluster Architecture

classes of queries: routable, push downable, recursive CTE, and

complex queries.

Routable queries have a ilter sharding key = value. Such

queries are routed to the node that has the shard that corresponds

to the value in the ilter. Before routing, the planner rewrites the

name of the distributed table in the FROM clause to reference the

shard table instead of the original table. The router executor passes

the rewritten query to the worker node, which then optimizes it

using the regular PostgreSQL planner, executes it, and returns the

result to the router executor.

Push downable queries are those that span multiple shards and

use aggregates, GROUP BY, ORDER BY, and LIMIT, and are ex-

ecuted using the Citus real-time executor. The key feature that

characterizes this class of queries is that they can be distributed in

a single round (i.e., the coordinator pushes the query parts down

to workers, then collects their results and produces the inal result).

Queries that contain complex joins and sub-queries may still fall

into this class, as long as they join and group on the distribution

column. The planner irst creates a plan tree of the input query

and transforms it into its commutative and associative form so it

can be distributed. It also applies several optimizations, to push

down ilters and projections to the worker nodes, to ensure that

network I/O is minimized. Similar to the MapReduce strategy, the

planner next breaks the query into one part that runs at the coor-

dinator (i.e., reduce), and one part that run on individual shards

on the workers in parallel (i.e., map). The planner then assigns

these query fragments (which are SQL queries) to the workers, and

passes the control to the Real-time executor. The workers locally

apply the PostgreSQL planner to optimize the execution of their

fragments. Next, the workers return their results to the executor

which triggers the query part of the coordinator to merge them, and

produce the inal result to the user. For instance the sum aggregate

is commutative and associative, so the workers can perform partial

sums over their shards, then the coordinator can sum these partial

sums to produce the inal result. The average aggregate is on the

other hand, non associative, so it has to be distributed diferently.

Basically it is broken into a sum aggregate and a count aggregate.
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Since both are commutative and associative, they are distributed,

then the average is computed at the coordinator.

Other complex queries that require redistribution of data are

handled by the Task tracker executor. This includes Recursive CTE

queries that cannot be pushed down, and non-co-located joins. For

recursive CTE, the planner is recursively called for the sub-queries.

During the execution the coordinator pushes back the result of the

sub-query to the worker nodes, and they get stored as intermediate

results, which are used as reference tables in the evaluation of the

main query.

Non-co-located joins are quite expensive as they involve a lot of

network I/O for re-partitioning the data. The Citus planner rejects

this class of queries by default. To activate it, an option needs to

be set. The planner then applies relational algebra optimizations to

reduce the number of iterations of re-partitioning, and to reduce

the data size before re-partitioning. In our experiments, the queries

that involved non-co-located joins always broke.

One query might be split into multiple parts, and diferent ex-

ecutors might be invoked for the parts. Citus chooses which to

use depending on the structure of each query, and can use more

than one at once for a single query, assigning diferent executors

to diferent sub-queries/CTEs as needed to support the SQL func-

tionality.

The two previous sections have described the out-of-the-box

features of MobilityDB and Citus. In the next section, we describe

their integration in order to provide big spatiotemporal data man-

agement. We assess the extent to which the API of MobilityDB can

be distributed by Citus, and the efort that is required in the future

to achieve a complete support.

3 DISTRIBUTED MOBILITYDB

As illustrated in Figure 3, managing a distributed database consists

of two phases: the preparation phase, where the cluster is initial-

ized and the distribution keys are deined, and the query phase.

The preparation phase is agnostic to the attribute types in the dis-

tributed table. While distributing the data over shards, Citus treats

MobilityDB types as binary objects. So moving the data from the

coordinator to the workers (i.e., sharding) and among the workers

(i.e., replication) is done in binary format. This is the mechanism

used by Citus to cope with the type extensiblity of PostgreSQL.

Insertions are routed by the coordinator to the shards in a way

that guarantees co-location of shard keys and that tries to balance

the partitioning over shards. Here is an INSERT statement (Line 1)

and its execution plan generated using the PostgreSQL EXPLAIN

command, then manually simpliied for a better presentation (Lines

2-7).

1 INSERT INTO trips VALUES (...);

2 Custom Scan (Citus Router)

3 Task Count: 1

4 Tasks Shown: All

5 -> Task

6 Node: host=pgxl3 port =5432 dbname=tripsddb

7 -> Insert on trips_102041

Line 2 shows that the Router executor is in charge, mainly because

the query hits a single worker node. Line 3 shows the number of

parallel tasks, which is one in this case. Line 6 outputs the address

of the worker that receives the task. Finally Line 7 outputs the task

on the worker side. Notice that the table name has been rewritten

into trips_102014, which is the name of the shard that receives the

tuple.

In contrast to the preparation phase, answering spatiotemporal

queries over a distributed schema might require a direct interaction

between Citus and MobilityDB, which is currently not available.

More speciically, the distributed query planners and executors

of Citus do not understand the MobilityDB types and operations.

Queries that require such an understanding cannot currently be

distributed. Next we analyze this in depth, considering the Citus

executor that handles the query, and the involved spatiotemporal

operations.

The Router executor is involved in queries that can be fully eval-

uated on a single shard, i.e., query that contains a condition shard

key = value. An example is given next:

1 SELECT * FROM trips WHERE carId= 100;

2 Custom Scan (Citus Router)

3 Task Count: 1

4 Tasks Shown: All

5 -> Task

6 Node: host=pgxl4 port =5432 dbname=tripsddb

7 -> Index Scan using

trips33_carid_idx_carid_102031 on

trips_102031 trips

8 Index Cond: (carid = 100)

This plan is similar to the previous one, because again it is han-

dled by the Router executor. Citus planner used its metadata to

locate the shard that contains the carId 100, which is trips_102031

on worker node pgxl4. The shard key in this example is carId. It

then rewrites the table name into the shard name trips_102031, and

passes the modiied query to the associated worker. At the worker

node, which runs MobilityDB, the query gets optimized as if it is a

local non-distributed query. Routable queries can hence use all the

SQL features of MobilityDB. A common use case for this class of

queries is in multi-tenant applications. For instance, a transporta-

tion company that has leets in multiple cities would structure their

database such that the city name is the shard key. In this way, the

vehicle data of one city goes to one shard, and the queries that

involve only one city will fall in the class of routable queries.

Excluding routable queries, all other classes of queries require

that Citus performs a non-trivial split of the execution plan into

coordinator part and workers part. This would require that Citus

understands to some extent the operations in the query, so that it

can decide an accurate splitting. PostgreSQL is however an exten-

sible system, and Citus accounts for this. Moreover, MobilityDB

operations are built using the extensibility features of PostgreSQL.

Therefore, many of them can be distributed, despite the fact that

Citus does not know their semantics. In the following we enumer-

ate the classes of operations of MobilityDB, and assess whether the

out-of-the-box Citus can distribute them.

3.1 Spatiotemporal Joins

MobilityDB has multiple predicates that can be used in joins. They

can be classiied in two types: predicates that yield bool, and lifted

predicates that yield a temporal Boolean tbool. The latter can be

quantiied using the two operations ever equals (&=) and always

equals (@=), to yield a bool value that can be accepted by SQL as a

join condition. The signature of these two operations are as follows:
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&=, @= TEMPORAL(S) × S → bool

They accept a temporal value and a value of its base type, and yield

bool. One can use them to express a predicate such as tintersects(trip,

place) &= TRUE, which computes the temporal intersection of a

vehicle trip (tgeompoint) and a spatial region (geometry) in the

form of a temporal boolean tbool, then checks whether it has

some true values, yielding a bool. Another example is (speed(trip)

< 50) @= TRUE, which checks whether the speed of the vehicle

has always been less than 50 km/h. Thus these two operations

allow lifted predicates to be used in joins. MobilityDB has a big

number of lifted predicates, as it basically implements the temporal

versions of all PostgreSQL and PostGIS operations that can be made

time-dependant. This covers the relationships between a value of

a spatiotemporal type and another value of a spatiotemporal, a

spatial, or a base type. The signatures of some examples are given

next:

tintersects tgeompoint × geometry → tbool

tgeogpoint × geography

tdwithin tgeompoint × geometry × float → tbool

tgeogpoint × geography × float

#=, #<>, #<, {float, tint, × {tfloat, int, → tbool

#>, #<=, #>= float, int} float, int}

speed tgeompoint → tfloat

where tintersects checks the time dependent intersection be-

tween a temporal geometry/geography with a geometry/geography

objects respectively. It is the lifted version of the st_intersects

predicate of PostGIS, that check the intersections between a pair of

geometries/geographies. Similarly tdwithin is the lifted version

of the st_dwithin which checks whether two geometries/geogra-

phies are within the distance threshold given in the last argument.

The temporal comparison operators #=, #<>, etc lift their corre-

sponding comparison operators =, <>, etc. Finally the operator

speed computes the time dependant speed of a trajectory. It is not

a predicate, yet it is put here as an example of the operators that

can be used to compose temporal boolean expressions.

Additionally, a number of Boolean predicates are available for

temporal types. The overlaps operator && checks whether the bound-

ing boxes of its two arguments have non-empty overlap, and returns

a bool. The two arguments can be temporal geometry/geography,

then the operator will compare their 3D spatiotemporal boxes. If

one of the arguments is a non-temporal geometry/geography, then

the operator compares the spatial bounding box of the temporal ar-

gument with the bounding box of the non-temporal argument. This

operator is of speciic interest, as it triggers the query optimizer to

use the available spatiotemporal indexes. The other bounding box

comparison operators (e.g., left, right, before, etc) are also available.

All the lifted predicates and the Boolean predicates described

above can be used in join expressions that relate temporal attributes

with temporal or non-temporal attributes. Citus does not know the

semantic of these join operations. Its distributed query planner

classiies such joins into only two classes: (1) co-located joins, and

(2) non-co-located joins. In co-located, every workers can perform

the join on its shards, independently from other workers, and the

inal result is simply the union of these results. It can then be

executed in a single round using the Real-time executor. In other

words, co-located joins do not require redistributing the data. One

clear example is a join between the distributed table and a reference

table. Since the reference table is replicated on all workers, it is

guaranteed to be a co-located join, for example:

1 SELECT *

2 FROM trips t, regions r

3 WHERE intersects(t.trip , r.geom)

4

5 Custom Scan (Citus Real -Time)

6 Task Count: 32

7 Tasks Shown: One of 32

8 -> Task

9 Node: host=pgxl2 port =5432 dbname=tripsdb

10 -> Nested Loop

11 -> Seq Scan on regions_102303 r

12 -> Bitmap Heap Scan on trips_102239 t

13 Recheck Cond: (trip && r.geom)

14 Filter: _intersects(trip , r.geom)

15 -> Bitmap Index Scan on trips_spgist_idx_102239

16 Index Cond: (trip && r.geom)

The query joins the trips and the regions relations. The schema will

be given in Section 4. The join condition is that the trip trajectory

spatially intersects the geometry. The trips relation is distributed,

and regions is a reference relation. The join statement is not known

to Citus. Yet, the distributed planner can decide that it is a co-

located join, and assigns it to the Real time executor. The worker

nodes locally optimize the queries, since they have MobilityDB.

Therefore, it was possible in this query to invoke the distributed

SP-GiST index of the spatiotemporal trip attribute (Line 15).

The non-co-located joins, on the other hand, require redistribu-

tion of the data, because data from one shard needs to be joined

with other shards. An example would be a self join of the trips

relation. For this kind of joins, Citus only supports the equi-joins.

It rejects all the spatiotemporal predicates described above, mainly

because it does not know how to redistribute the data, and it rejects

to perform a complete cross product.

Enabling non-co-located spatiotemporal joins would require

an extension that utilizes the semantic of the join operation, to

do better than a full cross product. For instance, the proximity

predicates such as overlaps, intersects, contains, etc, only needs to

join only the shards whose spatiotemporal extents do not violate

the proximity condition. To eiciently perform this, the relation

needs to be distributed in a way that preserves the proximity [20],

e.g., spatial grid, spatiotemporal grid, temporal partitioning, Hilbert

curve partitioning, etc.

3.2 Temporal aggregations

MobilityDB implements the following temporal aggregation func-

tions:

tcount set(TEMPORAL) → tint

tmin, tmax, tsum, tavg set(tfloat/tint) → tfloat/tint

tand, tor set(tbool) → tbool

tcentroid set(tgeompoint) → tgeompoint

Figure 4 illustrates the tsum(tint)→ tint aggregate. The top two

tint values are input, and the bottom one is the aggregation output.

Citus has a white list of aggregate functions that it supports.

Clearly, the temporal aggregates of MobilityDB are not in this white

list, so they are rejected. This white list approach is too restric-

tive. It is possible to leverage the PostgreSQL parallel aggregation

framework, and agnostically support a wide class of aggregates.

PostgreSQL has a native support of parallel aggregation. To enable
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it, the user aggregate operator needs to deine a combine function

and a inal function. The combine function is run by every process

participating in the parallel execution. It consumes the input tuples,

and generates an intermediate result. These intermediate results are

transferred to the leader process, which then runs the inal function

to generate the result.

Figure 4: Temporal aggregation

Clearly this aggregation framework can be adapted for distributed

processing, such that the combine function is run by the workers,

and the inal function is run by the coordinator node. Citus is unable

to do this, because it distributes the SQL, rather than distributing

the internal processing. The combine and the inal functions are

invisible to it because they are not exposed to SQL. A solution that

uses the two functions will need to replace the executor of the

parallel aggregations of PostgreSQL by a distributed executor. Such

an extension would then be able to run the combine function on

workers, rather than on the cores of the server machine.

Alternatively, distributing the SQL query would require that

the aggregate function be both commutative and associative. To

specify this, the CREATE AGGREGATE statement of PostgreSQL needs

to be extended to allow the user to specify these two properties.

For instance, all the temporal aggregates listed above, except tavg

and tcentroid, are commutative and associative. It is correct, for

instance, that the temporal sum of a set of temporal integers equals

to the temporal sum of partial temporal sums of this set. Based on

the veriication of these properties, the aggregate can be partially

calculated on the shards. The coordinator would then collect these

partial aggregates, and run the same aggregation function on them.

This is all achievable through SQL.

3.3 Spatiotemporal index access

The distribution of the Spatiotemporal GiST and SP-GiST is sup-

ported out-of-the-box. The CREATE INDEX statement on distributed

tables gets pushed down to individual shards, because one shard is

one PostgreSQL table. Moreover, workers independently optimize

the query parts that they receive from the coordinator. This allows

the invocation of these local indexes.

3.4 LIMIT

The ADT model that is implemented in MobilityDB encapsulates

the complete trajectory inside an object, that can be stored in a

single attribute. Using the LIMIT clause on tables that contain

spatiotemporal attributes shall limit the number of tuples, thus the

number of spatiotemporal objects that are retrieved. Limiting the

number of instants inside the trajectories is not done using the

LIMIT clause. In contrast to the ADT model, the temporal database

model (e.g., [5]), would use the LIMIT clause to limit the number of

instants. This semantic of limiting the instants inside the trajectories

is implemented in MobilityDB using many functions, e.g.,:

startInstant, endInstant TEMPORAL → INSTANT(S)

instantN TEMPORAL(S) × int → INSTANT(S)

instants TEMPORAL(S) → ARRAY(S)

These functions allow to access the individual instants inside the

trajectory, choose a speciic instant, or return all of them into an

SQL array allowing for random access, splice, and ordering. These

operations can be distributed, by pushing them down, because they

process attributes, rather then tuples.

4 EXPERIMENTAL EVALUATION

This section provides a comprehensive experimental evaluation

of the scalability of MobilityDB using Citus. All experiments are

conducted on a two clusters of 4 and 28 nodes running PostgreSQL4,

PostGIS5, Citus6 and MobilityDB7 over Ubuntu 18.04. The irst

cluster consists of 4 nodes, having the same specs: 4 cores per

socket (2 sockets and 2 threads per core) Intel E5520 2.27 GHz

processor, 2 TB of disk space and 24 GB RAM. The coordinator

node of the second cluster is one of the irst cluster nodes but with

many worker nodes and low specs. Every worker node is equipped

with an 4 cores (1 socket and 1 thread per core) Intel i5-4590 3.30

GHz processor, 20 GB of disk space and 8 GB RAM. The coordinator

node works for management and partitioning, and the other nodes

work for storage and processing.

4.1 Dataset and queries

BerlinMOD [6] is a benchmark for spatiotemporal data that is used

for measuring the performance of queries on moving objects data. It

contains a data generator that uses SECONDO [10] for generating

trips of moving vehicles within Berlin. A scenario is simulated

where a set of cars move within the road network of Berlin’s city.

It simulates drives to and from the work during the day time on

workdays, as well as leisure trips in the evening and on the weekend.

It generates datasets with diferent sizes that are conigured with a

parameter called scale factor. The generated schema is as follows:

cars <moid: int , licence: string , type: string , model:

string >

trips: <moid: int , tripid: int , trip: tgeompoint >

regions: <id: int , region: geometry >

points: <id: int , pos: geometry >

periods: <id: int , p: period >

licences: <licence: string , id: int >

We generated data with scale factors from 1 until 19 as described

in Table 1. The workload is constitute form the 17 BerlinMOD/R

queries, that come with the benchmark. They cover range queries of

four categories: object-based, temporal, spatial, and spatiotemporal.

4https://github.com/postgres/postgres
5https://github.com/postgis/postgis
6https://github.com/citusdata/citus
7https://github.com/ULB-CoDE-WIT/MobilityDB

https://github.com/postgres/postgres
https://github.com/postgis/postgis
https://github.com/citusdata/citus
https://github.com/ULB-CoDE-WIT/MobilityDB
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Table 1: Datasets description

SF Trips Points size (GB) SF Trips Points (GB)

1 300k 56M 5 3 870k 166M 14

5 1.4M 280M 24 7 2M 394M 34

9 2.6M 500M 43 11 3.2M 615M 53

13 3.8M 730M 63 15 4.4M 830M 72

17 5M 945M 82 19 5.6M 1000M 93

Queries Q.5, Q.6, Q.10,and Q.15 could not be distributed. The

Citus planner rejects them with the following error message:

ERROR: complex joins are only supported when all distributed

tables are joined on their distribution columns with equal

operator.

The remaining queries, despite their complexity, reduce to push

downable queries. We illustrate next one query as an example. The

SQL of Q. 17 is as follows:

1 WITH pointCount AS (

2 SELECT p.pointId , COUNT(DISTINCT t.carId) AS visits

3 FROM trips t, points p

4 WHERE intersects( t.trip , p.pos )

5 GROUP BY p.pointId

6 )

7 SELECT pointId , visits

8 FROM pointCount AS p

9 WHERE p.visits = ( SELECT MAX(visits) FROM pointCount );

It consists of a CTE that aggregates the count of the vehicle that

visited/intersected each of the query points. The intersection is

evaluated using the temporal intersects predicate in Line 4. The

main query, then, inds the points with the maximum number of

visits, which is again a CTE. Citus breaks this query into three part,

one part for every CTE, and one part for the main query. The plan

of the query is given next:

1 Custom Scan (Citus Router)

2 -> Distributed Subplan 54_1

3 -> GroupAggregate , Group Key: remote_scan.pointid

4 -> Sort , Sort Key: remote_scan.pointid

5 -> Custom Scan (Citus Real -Time)

6 Task Count: 32

7 Tasks Shown: One of 32

8 -> Task

9 Node: host=pgxl2 port =5432 dbname=sf21_0

10 -> HashAggregate , Group Key: p.pointid , t.carid

11 -> Nested Loop

12 -> Seq Scan on points_102041 p

13 -> Bitmap Heap Scan on trips_102008 t

14 Recheck Cond: (trip && p.geom)

15 Filter: _intersects(trip , p.geom)

16 -> Bitmap Index Scan on

trips_spgist_idx_carid_102008

17 Index Cond: (trip && p.geom)

This is the irst sub plan, which executes the pointCount CTE. It is

executed by the Real-time executor (Line 5), which distributes 32

copies of it over the 32 cores in the worker nodes. Each task is an

aggregate query on one shard that counts for every combination

of (pointId, carId) the number of intersections. The task shown

here is on shard trips_102008, and there are 31 similar tasks of the

other shards. The PostgreSQL planner on the worker decides for the

shown task to use the SP-GiST index on the trips table to optimize

the intersection predicate (Lines 16,17). The executor then orders

one worker to aggregate these partial aggregates, and counts the

total visits per point (Lines 3,4). The result of this aggregation gets

stored in an intermediate result ile. The following subplan reads

this ile, and evaluates the second CTE (SELECT MAX(visits) FROM

pointCount) in Lines 1-8. The Router executor evaluates it on the

worker pgx12, which maintains the intermediate result (Lines 7,8).

The result of the aggregate (i.e., the maximum number of visits)

gets again stored in an intermediate result ile.

1 -> Distributed Subplan 54_2

2 -> Custom Scan (Citus Router)

3 Task Count: 1

4 Tasks Shown: All

5 -> Task

6 Node: host=pgxl2 port =5432 dbname=sf21_0

7 -> Aggregate

8 -> Function Scan on read_intermediate_result

intermediate_result

9

10 Task Count: 1

11 Tasks Shown: All

12 -> Task

13 Node: host=pgxl3 port =5432 dbname=sf21_0

14 -> Function Scan on read_intermediate_result

intermediate_result

15 Filter: (visits = $0)

16 InitPlan 1 (returns $0)

17 -> Function Scan on read_intermediate_result

intermediate_result_1

Next, one task is assigned for the ilter of the main query. It reads

the intermediate result, and executes the ilter. Finally the Router

executor performs a scan to collect this result and returns it to the

user.

4.2 Evaluation results

Every scale factor is loaded into a separate database. On the cluster

setting, the distributed relation is trips. We experiment with three

data partitioning methods: object based, 3D grid partitioning, and

GiST partitioning. In object based partitioning, the shard key is

carId. In 3D-Grid partitioning, a regular grid is created on the whole

extent to the data. The grid cell size is deined based on the size

of the table in KB and the page size of PostgreSQL. We divide the

two values and take the cube root of the result, to be the number

of cells in each of the three dimensions. Every trip gets assigned to

the cell that contains its irst most instant. This grid cell number is

stored in an extended attribute, which is then used as the shard key

of the relation. In GiST partitioning, we use the cluster operation

of PostgreSQL to redistribute the data of the table using the GiST

index. This operation exploits the index to store the trips that are

close to each other together in the same table. Next, we assign a

number to each row based on the new order of the data and use it

as a sharding key.

Normally the partitioning method should not afect the query

performance, because the distributable queries all belong to the

push downable class, which is only afected by the distribution

balance. Still, we want to conirm this analysis, and assess whether

the distribution method afects other aspects such as the index ei-

ciency. The chosen partitioning methods are examples of diferent

partitioning methods: object-based partitioning, spatiotemporal

space and data partitioning. The remaining tables are replicated in
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SF1.0 SF5.0 SF9.0 SF15.0 SF19.0

Single Node 100% 100% 100% 100% 100%

Object-Based 7.97% 6.48% 5.01% 4.02% 3.90%

3D-Grid 6.62% 5.90% 4.06% 3.97% 3.88%

GiST 6.66% 6.02% 4.09% 4.00% 3.90%

0%

20%

40%

60%

80%

100%

(a) Performance gain on 4 nodes

SF 1.0 SF 5.0 SF 9.0 SF 15.0 SF 19.0

Single Node 100% 100% 100% 100% 100%

Object-Based 2.92% 1.87% 1.14% 0.95% 0.91%

3D-Grid 2.57% 1.58% 1.08% 0.88% 0.80%

GiST 2.66% 1.62% 1.11% 0.89% 0.79%

0%

20%

40%

60%

80%

100%

(b) Performance gain on 28 nodes

Q1 Q2 Q3 Q4 Q7 Q8 Q9 Q11 Q12 Q13 Q14 Q15 Q17

Object-Based 31% 145% 11% 10% 3% 5% 1% 0.21% 11% 1.13% 1% 3% 10%

3D-Grid 35% 153% 5% 10% 3% 6% 1% 0.21% 10% 1.23% 1.26% 3% 10%

GiST 89% 97% 8% 10% 3% 6% 1% 0.21% 11% 1.13% 1% 3% 10%

0%
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(c) Performance gain per query

SF 19.0

100%

0.91%

0.80%

0.79%

SF1.0 SF5.0 SF9.0 SF15.0 SF19.0

Object-Based 62 214 411 521 709

3D-Grid 51 195 333 515 705

GiST 52 199 335 519 709

0
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(d) Comparing partitioning methods

Figure 5: Experimental results

all workers (in the cluster setting) as reference tables. We measure

the query performance of the 13 distributable queries on the all the

scale factors. Every query is run 5 times and the average response

time is calculated.

Figure 5a illustrates the speedup gained on the 4 nodes cluster

(one coordinator and three workers) versus a single machine of

the same coniguration as any of the cluster nodes. The igure is

normalized by the runtime of the single node. For instance, in SF1.0,

the distributed query using GiST partitioning costs 6.66% of the run

time of the same query on a single node. The gain is signiicant,

as the runtime on such a small cluster is between 3.8% and 8%

of the single node runtime. The gain slightly increases with the

increase of data size, because the single node gets more congested.

These results are conirmed on the 28 nodes cluster, Figure 5b. It

shows more gain than the smaller cluster, but not proportional

to the increase in the cluster size, mainly because the data is not

big for such a cluster size. Figure 5c shows the gain per query.

Except for queries Q1, Q2 all other queries have similar gain. This is

mainly because all of them fall into the class of co-located joins, as

discussed in Section 3. The exception of Q1, Q2 is of no signiicance,

because the run times of these queries on the single node as well as

on the cluster is in terms of milliseconds. So this exception can be

contributed to other minor factors such as the networking cost. The

three igures do not show signiicant diferences between the data

partitioning methods. The 3D-Grid is slightly better than the other

two methods, but with a small margin. This is further conirmed in

Figure 5d, which shows the total runtime of all queries in seconds

for every coniguration.

5 RELATED WORK

This work is part of the MobilityDB project, which has the goal of

illing the gap between moving object database research and prac-

tice. On the one hand, there is a long standing research on moving

object databases, dating back to early 2000s, with quite mature re-

sults. There are also few system prototypes [8, 10, 18]. On the other

hand, there is no industrial-scale MOD available. Therefore, these

research results are not accessible to end users. MobilityDB is engi-

neered up from PostgreSQL and PostGIS, providing spatiotemporal

data management in SQL. It implements the state of art, developed

by the research community, into a widely used open source DBMS.

While the core features have been developed by the MobilityDB

team, it has recently been released as open source 8, with detailed

documentation 9, to encourage community contributions. So it can

be seen as a platform for implementing MOD features and research

results.

As aforementioned, there are few MOD prototypes in the liter-

ature; namely: HERMES [18], SECONDO [10], DEDALE [8], and

DOMINO [21]. SECONDO[10] and HERMES [18] follow the ADT

approach of moving object databases, which is also followed in

MobilityDB. HERMES can be run on top of Oracle and PostGIS,

hence accessible in SQL. It did not however exploit their type sys-

tem. For instance, for deining the moving point type, it builds on

a custom-deined x ,y pair, rather than using the PostGIS/Oracle

point type. Accordingly, the functions provided by the underlying

DBMS are not reused. The spatiotemporal operations in HERMES

are evaluated over the bounding boxes of the objects, rather than

their exact coordinates.

SECONDO [10] is an extensive implementation of moving object

types and operations. In contrast to HERMES and DEDALE, it is

still an active project, with recent releases. SECONDO reuses the

ile systems of Berkeley DB and Cassandra. The remaining func-

tions otherwise are implemented from scratch. It consists of three

modules: the kernel, the optimizer, and the GUI. The kernel has the

query processor, and the Algebras. Every Algebra deines database

types and operators. For instance, the Temporal Algebra deines

8https://github.com/ULB-CoDE-WIT/MobilityDB
9https://docs.mobilitydb.com/nightly/
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the types and operations of moving objects in [11]. SECONDO

also implements indexes such as RTree, TBTree, MMRTree, and

MONTree. The kernel can be queried using a procedural language

called SECONDO executable language. The optimizer module ac-

cepts a syntax similar to SQL, and generates plan in the SECONDO

executable language. Not all SECONDO operations are available in

this SQL-like language. Finally, the GUI module ofers an interface

for visualizing the moving objects in a movie style.

DEDALE [8], and DOMINO [21] are a proof of concept imple-

mentations, rather than systems. Both are not anymore maintained.

DEDALE implements a constraint database model for spatiotem-

poral data management [9], where a spatiotemporal trajectory is

represented using a set of linear constraints. DOMINO (Database

for Moving Object tracking) implements the concept of dynamic

attributes to model the current location of a moving object that is

being tracked. It stores the last observed location (as fact), and the

speed of the object (for prediction). Location updates are pushed by

the moving object, in a way that balances the update cost, the devi-

ation cost, and the uncertainty cost. On top of this model, DOMINO

answers probabilistic range queries. For big spatiotemporal data

management, there are two main lines of work: object-relational

databases, and NoSQL systems.

5.1 Object-Relational Databases

Up to our knowledge, the system implementations in this category

are all SECONDO extensions: Parallel SECONDO [12], Distributed

SECONDO [16], and SECONDO Distributed2 Algebra [3]. Parallel

SECONDO [12] is a scalable version of SECONDO that uses Hadoop

as a communicationmanager for scheduling andmanaging the tasks

between the cluster nodes. Every node in the cluster runs a regular

SECONDO instance and contains a full copy of the data. One node

is playing the role of a master. The coming query is partitioned into

small parallel queries in the master node and Hadoop distributes

the parallel queries over the worker nodes to be executed by every

SECONDO instance. Then, Hadoop sends the results back to the

master node to be aggregated. Selection and transformation queries

that are run on a tuple-by-tuple basis are simply split over the

cluster nodes, as well as the data. Yet for joins, special parallel join

operators have been implemented.

Distributed SECONDO [16] follows a similar concept, yet with-

out using Hadoop. Cassandra is used as a storage layer, where

data is split into small units that are assigned to query processing

nodes. The query processing is done using standard SECONDO. The

cluster consists of three types of nodes: management nodes (MNs),

storage nodes (SNs), and query processing nodes (QPNs). Both MNs

and QPNs are running instances of SECONDO. SNs run Cassandra

and store the data. QPNs also run a helper tool for executing the

queries, called QueryExecutor. It determines which part of the data

need to be processed by the local SECONDO installation. Reading

and writing operations to and from the SNs are done by MNs and

QPNs. MNs are used to import and export the data into and from

Distributed SECONDO. Query processing is done by SECONDO

nodes where the QueryExecutor is the link between the SNs and

the QPNs. QPNs request the data from SNs to execute the speciied

query on the data chunks and write the result back to the SNs.

The SECONDO Distributed2 Algebra [3] allows the user to ex-

plicitly distribute the data and the processing in the query. Again

the cluster is built of regular SECONDO nodes, one of which is

marked as the master. Mainly two types are deined: darray dis-

tributed array, and dfarray distributed ile array. The later is for

distributing a SECONDO relation, while the former is for distribut-

ing any collection of SECONDO objects. The deinition of the arrays

explicitly stores how the cells are mapped to the SECONDO nodes.

The user query, which is written in the SECONDO executable lan-

guage, consists of three parts, that use the operations of the Algebra.

The distribute part explicitly deines how the data is sharded over

the array slots, hence over the worker nodes. The map part deines

a function, in the form of a SECONDO query, that every worker

node will execute on the array slots assigned to it. Finally the collect

part deines how the master collects back the results of the workers.

The map part, being a SECONDO query, is very lexible. It can

process the local array slot, join diferent slots, or even redistribute

the data over the workers. The SECONDO Distributed2 Algebra is

thus a powerful tool for experimenting with data and processing

distribution methods.

Alas, we could not compare MobilityDB results with these three

extensions for technical reasons. Parallel SECONDOandDistributed

SECONDO are not maintained with the recent SECONDO and

Hadoop versions. While Distributed2 Algebra requires that the

queries are expressed using the Algebra operations, that we do not

master. We would like to do so in the future, though. We learn a

lot from these three works, and exploit them further in the context

of MobilityDB. The added value is that these distribution methods

will be accessible to end users in PostgreSQL.

5.2 NoSQL Systems

STARK [13] provides a platform for analyzing big spatiotemporal

data by adding diferent modes of indexing and spatial partitioners

on the top of the Apache Spark’s core. The representation of the

spatial object and the index structure are done by using JTS Java

library. The spatial operators are implemented inside the Spatial-

RDDFunction class, that are join and kNN. SpatialRDDFunction is

a spatial extension of the original RDD. SpatialRDDFunction parti-

tions the data based on one of these types: spatial GridPartitioner,

BinarySpacePartitioner, and PartitioningPolygons. GridPartitioner

divides the space into grid of equal cell size. BinarySpacePartitioner

divides the space into grid based on the maximum cost for every

partition and it is better than GridPartitioner because there are no

empty partitions in this approach. The last partitioning approach

is PartitioningPolygons, every polygon only exists in one partition

based on it’s centroid. After partitioning the spatiotemporal data,

the index can be built using any in-memory spatial index structure

that are provides by JTS library such as R-tree.

Summit [1] is a spatiotemporal data management extension of

SpatialHadoop [7]. It supports two levels of partitioning: temporal-

based and spatial-based. The temporal-based partitioning is based

on equi-width or equi-depth. For every temporal partition, the

spatial data is partitioned using spatial-based or segmentational-

based. Spatial-based technique supports range and join queries

while segmentational-based technique supports similarity kNN

queries. Summit does not support the notion of trajectory because
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it is only limited to process a set of discrete temporal points. Also,

it can not express the trajectory operations such as speed and inter-

sects. Summit provides two types: STPoint to represent spatiotem-

poral point and trajectory to link the STPoints that are related to

the same moving object.

TrajSpark [22] is a trajectory data management framework based

on Apache Spark. It provides RDD extensions for managing tra-

jectory segments, called TRDD and IndexTRDD. TRDD is used to

scan the whole partitions without iltering while IndexTRDD has

the ability to ilter the partitions by incorporating a global and

local indexing strategy. Partitioning the data is done using three

constraints: Data locality, load balancing (ixed partition size), and

STPartitioner which contains a spatial quad-tree or kd-tree index.

STPartitioner uses the bounding box of the segments to partition

points, then the trajectory points located in the same bounding box

are grouped together. A global index is built over the partitions

to ilter them from the beginning of the query and bring only the

relevant partitions. TrajSpark supports three kinds of queries: (1)

(Single Object)-based query, (2) (Spatiotemporal range)-based query,

and (3) KNN-based query.

These systems do not represent trajectories as irst class citi-

zens. HadoopTrajectory [2] tries to ill in this gap by extending

Hadoopwithmoving object types and operations. HDFS is extended

by readers and splitters that understand the new types. Similarly

the Hadoop MapReduce is extended with trajectory processing

operations. User can access these types and operations in their

MapReduce programs.

6 CONCLUSIONS

In order to address the increasingly large-scale moving object query

processing, we proposed an integration between two PostgreSQL

extensions MobilityDB for managing moving object data, and Ci-

tus for distributing the query processing across a cluster of nodes.

The integrated solution could distribute most of the spatiotem-

poral operations of MobilityDB. It was not possible to distribute

temporal aggregations because Citus hard-codes a white list of

aggregations that it supports. It was also not possible to distribute

the non-co-located spatiotemporal joins, because these require that

the distributed query planner knows about the spatiotemporal ex-

tents of the shards, and about the semantic of the join expression.

These two classes of operations would require further extensions,

to support their distribution. Ideas for such extensions have been

discussed.

The experiments were done using the BerlinMOD benchmark

of moving object databases. The results show multiple order of

magnitude gain in the performance of the distributed queries, over

single node queries. Thirteen out of the seventeen BerlinMOD

queries could be distributed out-of-the-box. We comment, though,

that BerlinMODquery is not designated to distributedMOD. Almost

all the fourteen queries fall in the class of push-downable queries.

A speciic benchmark is hence required to assess the performance

of the diferent classes of distributed MOD queries.
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