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As the volume and complexity of spatiotemporal data continue to expand rapidly across various domains such
as urban planning, environmental monitoring, and logistics, the demand for comprehensive data management
systems becomes increasingly urgent. Handling such data entails intricate topological and analytical operations,
emphasizing the necessity for robust and adaptable solutions capable of addressing diverse user queries.

This paper introduces Distributed MobilityDB1, an open-source system engineered to manage big spatiotem-
poral trajectory datasets within SQL environments. Distributed MobilityDB offers capabilities for scalable
spatiotemporal data management, facilitating efficient distributed query processing while seamlessly inte-
grating with existing MobilityDB SQL operations. Key contributions highlighted in the paper encompass an
adaptive spatiotemporal SQL query engine. This engine channels user SQL queries through various planning
strategies for optimizing the distributed query plan, then distributing the query execution across cluster nodes
transparently to the user. Various spatiotemporal query types are supported for distribution, including range
selections, and joins proximity. Distributed MobilityDB is implemented as an add-on extension to PostgreSQL,
which facilitates installing it on a readily running server. The paper further presents extensive experiments
conducted on both cloud and on-premise environments using both real and synthetic datasets, including AIS
for ship trajectories and BerlinMOD for simulated person trips.
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1 INTRODUCTION
The field of mobility data management is rapidly transforming, with the efficient processing of
large-scale spatiotemporal data becoming increasingly critical. This type of data is integral to
numerous businesses, including for instance global shipping [43], urban transport [32, 48], and

1https://github.com/mbakli/DistributedMobilityDB
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biodiversity monitoring [34]. As the volume and complexity of spatiotemporal data escalate, they
pose a significant challenge, emphasizing the need for scalable and robust management systems.
In recent years, spatial and spatiotemporal solutions have emerged within the domain of big

data frameworks, presenting a plethora of methods and some system prototypes. Early system
prototypes include Summit [1] and HadoopTrajectory [3], both of which extend Hadoop by incor-
porating trajectory types and operations. These extensions enable users to invoke trajectory-related
functionalities within their map-reduce programs. In the Spark ecosystem, notable works include
TrajSpark [49], TrajMessa [21], and Dragoon [13]. Basing on Spark, these systems have demon-
strated performance in handling compute-intensive analytical tasks. Further some frameworks
offer a SparkSQL interface, as in [11, 13, 21], enabling users to execute query operations in SQL.
It is essential to note though that the Spark Catalyst processes these query operations somewhat
opaquely, lacking spatiotemporal understanding. For example, when dealing with a join operation
between two distributed tables, the Catalyst optimizer faces the challenge of selecting an appro-
priate strategy. Two primary options that can be applicable here: (1) Repartitioning both tables
based on the specified partitioning key. However, this approach is not feasible when dealing with
spatiotemporal keys, as they are not supported by systems for repartitioning. (2) Broadcasting one of
the tables, which can be a very costly operation, particularly if the tables involved are considerably
large. In practice, option (2) is often the chosen solution for queries featuring a spatiotemporal join,
as the catalyst lacks understanding of the semantics behind spatiotemporal predicates to reshuffle
data. To ensure optimal performance, users often find themselves compelled to script in Python,
managing queries and filtering data based on their comprehension (e.g., broadcasting A, not B, and
vice versa). Indexing in spatial systems such as Apache Sedona [45] could also be used to speed up
one side of the join. It’s worth acknowledging that the efficacy of this approach can be influenced
by the order of query elements, potentially impacting overall performance.

Existing big data frameworks excel in scenarios where the advantages of distributed processing
outweigh the initial overhead of loading and distributing data files. However, in scenarios where the
predominant requirements involve storing data and executing frequent queries that can leverage
indexes, such as the dashboard-style queries, a database platform becomes more fitting. Such appli-
cations often necessitate querying and aggregating data based on temporal, spatial, and categorical
parameters, making a database platform a more suitable choice. Furthermore, applications requiring
intricate spatiotemporal queries or necessitating joins between different datasets benefit from the
expressive query languages, the robust data model encompassing various data types and operations,
as well as the optimization strategies provided by databases.
In the realm of database systems, a couple of moving object database (MOD) systems have

been developed by extending the relational database model with spatiotemporal types and opera-
tions: SECONDO [16] and MobilityDB2 [50, 51]. Both systems adopt the same abstract data type
(ADT) model but differ in their discrete representation, specifically their class hierarchies [51].
A key distinction between the two is their intended use cases: while SECONDO is designed as
a research prototype, MobilityDB has been engineered as an extension to PostgreSQL with the
goal of being industry-ready. Consequently, MobilityDB supports the full SQL standard [19], "part
2: SQL Data Definition and Data Manipulation Syntax and Semantics", which is a major advan-
tage in practical applications. In MobilityDB, a moving object is abstracted as a function of time
𝑓 (𝑡) → geometry/geography, where at a single time instant the moving object is represented as
geometry or geography depending on the coordinate system. The domain of the function is the
time span at which the moving object has been observed. The range is the spatial trajectory of
the object. The object could be of any geometric type: point, line, or region, yet the common type

2https://github.com/MobilityDB/MobilityDB
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is point, leading to the definition of temporal points. While the movement of the object in the
real world is continuous, the current location tracking technologies observe it at discrete time
instants depending on the sampling rate. In MobilityDB, a trajectory is represented as a sequence
of geometry/geography point observations, with linear interpolation in-between.

In a previous work [4–6], we introduced a distributed moving object database system by integrat-
ing MobilityDB and Citus 3 [9]. Citus is an open source extension to PostgreSQL that enables data
and query distribution across a cluster of PostgreSQL nodes in a shared nothing architecture. Citus,
being the engine behind the managed database service Microsoft Azure Database for PostgreSQL 4,
is a versatile tool for distributing PostgreSQL databases. It supports hash partitioning for data
distribution. In this initial integration, MobilityDB tables could be distributed over a cluster of
MobilityDB nodes using hash partitioning on alphanumeric columns (e.g., trip identifier). This
out of the box integration already allowed several types of queries including spatial, temporal and
spatiotemporal range queries to be distributed across distributed nodes. However, it did not address
the complexities involved in spatiotemporal data distribution. Specifically, this approach involved
several limitations: (1) Loss of spatiotemporal locality: Citus’s hash partitioning method, while
effective for distributing alphanumeric data, does not take spatial and temporal proximity into
account. This leads to inefficient execution of spatiotemporal queries, particularly joins and kNN
queries, where data locality plays a crucial role in performance; (2) Suboptimal query execution:
The lack of awareness of spatiotemporal properties in Citus’s query planner results in high com-
munication costs, redundant data processing across nodes, and incorrect results, particularly for
operations like proximity joins; (3) Complexity of query optimization: Relying on Citus’s existing
query planner without extending it to understand spatiotemporal predicates introduces significant
inefficiencies.

To improve on these previous results, the work presented in this paper addresses the following
main technical challenges: (1) extend data partitioning to support spatiotemporal partitioning,
ensuring that moving object data is distributed in a way that preserves spatial and temporal prox-
imity, (2) extend the SQL query planner and executor to plan and optimize spatiotemporal queries,
including proximity joins and trajectory operations, across distributed nodes. Accordingly, this
paper contributes a distributed MOD architecture and a corresponding open source implementation
that bring the support the following capabilities:
• Distributed MOD that supports the full SQL standard
• Spatiotemporal data distribution via user-defined Functions, implementing multidimensional
tiling strategy (Section 4).
• Distributed query planning, optimization, and execution for several spatiotemporal query
types, including range queries, point-based and trajectory-based kNN queries, broadcast
joins, intersection joins, self and distance joins, as well as joins involving trajectory tables
with diverse partitioning schemes (Sections 5 and 7).
• Further, we set as a goal that this development is engineered as a PostgreSQL extension. In
contrast to forking PostgreSQL, an extension allows deployment into existing PostgreSQL
servers without the need for recompilation or server restart. This capability is of specific
interest to industrial applications, where high availability needs to be guaranteed (Sections 3
and 6).

In the rest of the paper, the proposed Distributed MobilityDB system will be abbreviated as
DistMobilityDB. The paper is structured as follows: Section 2 provides an overview of related work.
Following that, in Section 3, we formally introduce the architecture of DistMobilityDB. In Sections

3https://github.com/citusdata/citus
4https://learn.microsoft.com/en-us/azure/postgresql/hyperscale/moved?tabs=direct
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4–6, we delve into the details of the key system components, covering the Distribution Manager,
Query Engine, and PostgreSQL Extension APIs, respectively. Section 7 is dedicated to presenting
the experimental results. Finally, we conclude the paper and discuss the possible future work in
Section 8.

2 RELATEDWORK
In recent years, few commercial solutions for distributing relational databases have appeared,
including Vitess 5 for distributing MySQL, Citus6, Redshift7, and TimescaleDB8 for distributing
PostgreSQL. They compare to each other in terms of their support to the different kinds of workloads:
CRUD, data warehousing, analytical queries, multitenant applications, etc.

Meanwhile, the proliferation of GPS-enabled devices has generated massive amounts of mobility
data. This explosion of data generation has posed many challenges in the data management
community such as data partitioning for continuous trajectories and spatiotemporal joins. As a result,
researchers and practitioners have proposed various prototypes for trajectory datamanagement [38].
Most of them are based on HDFS/MapReduce or similar distributed processing frameworks such as
[1, 3, 7, 11, 13, 20, 27, 28, 35, 36, 44, 49].
The only works in distributed moving object databases, up to our knowledge, as these are

based on the SECONDO system, and our previous work is based on the MobilityDB system. The
Distributed Arrays Algebra [18] provides a framework of distributed processing in SECONDO [17].
It is thus possible to distribute trajectory data and query processing using it. Older distributed
versions of SECONDO [24, 26] provide integration with Hadoop and Cassandra to support the
distribution. The main limitation in these works is the missing SQL support. The distribution is
thus not hidden to the user. Similar to map-reduce, users must explicitly write a program to handle
data distribution and query execution. Further, in [24, 26] the complete trajectory is duplicated
across all overlapping partitions, which may replicate the size of the original dataset by one or
more orders of magnitude.

As an illustration, consider a 20 GBAIS ship trajectory dataset where data replication escalates the
size to 147 GB. Replication consumes substantial storage as most ship trajectories cover most of the
spatiotemporal extent, resulting in replication across all overlapping tiles. However, this approach
offers suboptimal performance compared to fragmentation, mainly due to that the number of
spatiotemporal points is too large to be loaded and verified by any of the spatiotemporal predicates.
Addressing this challenge, the approach presented in [36, 44] leverages the Map-Reduce paradigm
to fragment trajectory data into multiple subtrajectories across overlapping partitions. Nevertheless,
the input data comprises discrete points, and subtrajectories are stored as sets of points. In this
paper, DistMobilityDB accepts a table containing complete trajectories as input, transforming it into
a distributed table with fragmented trajectories, all while preserving the concept of interpolation. In
this scenario, the DistMobilityDB query engine has the ability to distribute the trajectory functions
and deal with them as aggregates. This would allow executing the query operations faster and
in-place, rather than collecting them first which will happen but in rare cases.

In the following, we group the related work into three classes: spatiotemporal data partitioning,
distributed processing algorithms for specific query types, and systems implementations. Our work
belongs to the systems category, where we implemented a distributed moving object database
extending on open source tools.

5https://vitess.io/
6https://www.citusdata.com/
7https://aws.amazon.com/redshift/
8https://www.timescale.com/

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2024.

https://vitess.io/
https://www.citusdata.com/
https://aws.amazon.com/redshift/
https://www.timescale.com/


Distributed MobilityDB: A Scalable Moving Object Database Management System 111:5

Spatiotemporal data partitioning. In [47] a time-hash-based trajectory data partitioning was
introduced, to support range queries over discrete spatiotemporal points. The idea of temporal
partitioning was also used in [39], in combination with coordinate quadtree coding for range and
trajectory ID queries. In [33] a spatial trajectory clustering method extending the STR algorithm
was proposed. It operates on selected points of trajectories that are grouped into subgroups with
similar starting positions and similar ending positions. In [15, 23] the GeoHash algorithm was
extended to support spatiotemporal range queries in MongoDB and HBase.

Spatiotemporal query distribution. Existing work targets the distribution of certain types
of spatiotemporal queries, mostly by using the MapReduce framework and its open-source imple-
mentations Hadoop and Spark. P. Tampakis et al. [36] proposed a distributed subtrajectory join
using MapReduce in three phases: temporal data partitioning, joining based on the plane-sweep
algorithm, and refinement for grouping and sorting results. Ray et al. [29] introduced a multi-core,
single-machine algorithm to join a distributed trajectory dataset with a non-distributed set of
spatial objects, such as lines and polygons. The problem of joining two distributed spatiotemporal
datasets was addressed in [40]. The cogroup Spark operation is used to collect, from the two datasets,
the points that have proximity, and then verify the spatiotemporal relationship. In [31], a query
optimizer for spatial joins was proposed to deal with three different cases for joining two spatial
point datasets. Then, the optimizer applies either one-to-one join or one-to-many join to verify
the intersects predicate. Sedona [45] is a spatial extension of Spark. It extends the RDD concept to
support spatial data types, indexes, and geometrical operations at scale. It supports range and kNN
queries. In [22], a time range count index is used on Spark for speeding up the kNN query. Other
works that try to deal with the trajectory kNN queries are presented in [25, 41, 42, 46]. To sum
up, all of the above approaches provide a distributed solution for specific query types supporting
limited sets of query predicates. This differs from our work in DistMobilityDB, where we aim to
design a distributed MOD capable of distributing a wide range of user spatiotemporal queries while
leveraging the existing MOD infrastructure.

Systems. Table 1 compares the relevant systems. The distinctive feature in DistMobilityDB is
the transparent query distribution which is taken over by a query engine. DistMobilityDB uses
multi-dimensional tiling to split and distribute the trajectories over the worker nodes. It thus
follows the general strategy of computing partial results over sub-trajectories, then aggregating
the final query result. A clear advantage is that trajectories are not replicated over nodes, which
avoids duplicating the data storage cost. In addition, DistMobilityDB is able to distribute a wide
range of spatiotemporal selection and join queries that can be found in the literature.

Table 1. Functional comparison between the distributed trajectory data management systems. The proposed
system in this paper, DistMobilityDB, is shown in the first row.

Systems / Features Architecture SQL
Planning

Query
Writing Partitioning Trajectory

Representation Range kNN
Trajectory
Functions

Broadcast
Join

Distance
Join

Intersection
Join

DistMobilityDB DBMS ✓ SQL MD Tiling Subtraj-based S/T/ST ✓ ✓ ✓ ✓ ✓
SECONDO [18] DBMS Query Plan Uniform Grid Replication S/T/ST ✓ ✓ ✓ ✓
Summit [1, 2] MapReduce Pigeon Two-level point-based S/T/ST ✓ ✓
HadoopTrajectory [3] MapReduce Hadoop Rtree, Grid Replication ST ✓ ✓
TrajSpark [49] RDD Spark Quadtree Point-based S/ST ✓
TrajMesa [20] RDD SparkSQL Vstore, Hstore Replication S/ST ✓
UITrajMan [11] RDD SparkSQL STR Point-based ST
TrajStore [10] Standalone Quadtree Subtraj-based ST ✓
Dragoon [13] RDD SparkSQL STR, Grid Point-based ST ✓
SharkDB [37] Standalone Time-Based Subtraj-based T ✓
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3 DISTRIBUTED MOBILITYDB ARCHITECTURE
This section presents the architecture for the proposed DistMobilityDB system. An overview of
this architecture is given in Figure 1. The hardware consists of a cluster of MobilityDB nodes, i.e.,
PostgreSQL nodes that include the MobilityDB extension. These nodes are denoted as workers
W1 ... Wn. The cluster also includes one or more coordinator nodes, denoted Ci, which run the
Citus extension of PostgreSQL. The coordinator nodes break a spatiotemporal user query into tasks.
These tasks are then executed by the worker nodes in parallel. The figure captures the interactions
within the coordinator, responsible for query distribution and execution management. While the
worker nodes also execute queries, they follow the instructions sent by the coordinator, which
is responsible for orchestrating the entire distributed process. The arrows in the figure indicate
the flow of information and interactions between the PostgreSQL client and the various system
components. These arrows represent bidirectional communication, where the Extension APIs
facilitate the handling of queries and operations, directing them to the appropriate components for
processing and receiving feedback or results in return.
The essential components of DistMobilityDB consist of three main modules, described briefly

below.

 PostgreSQL Extension 
                 APIs

     Storage & Processing 
                 Nodes

     Distribution Manager

          Query Engine

C1 W1 W2 Wn

Planner Executor UDFs Background
Workers

Coordinators Workers

C2

Data
Partitioning

Distributed
Indexing

Metadata
Management

Query
Planner

Planner
Strategies

Execution
Plans

Various
QueryTypes

Spatiotemporal
Queries

Plan
Preparation

Index
Information

Data
Parttitioning

PostgreSQL
Client

Query
Results

User

Execution
Plan

DistMobilityDBQuery
Submission

Ready
Results

Fig. 1. The proposed Distributed MOD Architecture of DistMobilityDB: This system interacts with a user
using any compatible PostgreSQL client. Core components include (1) PostgreSQL Extension APIs, which
handle incoming queries and forward them to the query engine; (2) CoreQuery Engine, responsible for query
planning and execution across nodes; (3) Distribution Manager, which manages data partitioning and sends
index information to the query engine for filtering; and (4) Storage and Processing Nodes, which implement
the execution plans and data partitioning through coordinators and workers.

PostgreSQL Extension APIs DistMobilityDB utilizes the available PostgreSQL hooks to modify
database behavior dynamically. These hooks include the SQL query Planner, the plan Executor, User
Defined Functions (UDFs), facilitating distributed data manipulation, and Background Workers,

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2024.
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handling asynchronous tasks for spatiotemporal data management. By leveraging these hooks, Dist-
MobilityDB intercepts interactions between the PostgreSQL nodes that form the cluster, allowing
for selective overrides of default behaviors, and achieving integration of distributed functionalities
and optimizations. This avoids the inefficient query execution seen in the straightforward inte-
gration by allowing DistMobilityDB to manage spatiotemporal queries and generate the proper
execution plans in the query execution process.
Query Engine The Query Engine is a cornerstone of DistMobilityDB. Upon receiving an SQL

query, this engine transforms it into a distributed query plan. Its adaptability lies in its capability to
seamlessly handle queries, encompassing both relational and spatial-temporal predicates, without
necessitating users to modify their queries. The Query Engine addresses the shortcomings of the
straightforward implementation by extending the query planner to understand the semantics behind
query predicates and optimize spatiotemporal queries. This includes pushing down spatiotemporal
filters to the nodes andminimizing data reshuffling for join queries. These optimizations significantly
reduce the network overhead and improve the overall efficiency of distributed spatiotemporal query
execution.
Distribution Manager DistMobilityDB partitions the input relation into shards that preserve

spatiotemporal data locality and load balancing. Data partitioning follows the multirelational
algebra MRA [8], with the addition that the partitioning is spatiotemporal. In the sequel, we denote
the distributed table as multirelation following the MRA notation. It provides a two-level (global
and local) distributed indexing scheme to reduce the global transmission cost and local computation
cost.
Storage & Processing Nodes DistMobilityDB uses a shared nothing architecture. The cluster

has a coordinator node that manages data storage and processing among worker nodes. All nodes
are regular PostgreSQL instances. Only the coordinator knows about the cluster. Worker nodes
do not know that they are part of a cluster. All nodes have PostgreSQL, Citus, and MobilityDB.
The coordinator has in addition the DistMobilityDB extension, which handles the spatiotemporal
distribution logic and delegates to Citus the communication between nodes, for instance, issuing a
command and waiting for results. DistMobilityDB can also work on a single node, which then acts
both as a coordinator and as a worker.
While Citus provides the underlying infrastructure for inter-node communication, DistMobili-

tyDB introduces several layers of parallel processing that enhance query execution across multiple
nodes. The system implements a custom spatiotemporal distributed query engine, complemented by
various UDFs. The query engine ensures that data partitioning, task execution, and query planning
are handled in a highly parallelized manner across all nodes.
To provide a clearer understanding of how the various components of the DistMobilityDB

architecture relate to the proposed system’s functionalities, the following sections correspond to
each module:

• Distribution Manager (Section 4): This section describes the spatiotemporal-aware parti-
tioning strategies used to efficiently distribute data across nodes, ensuring that spatial and
temporal locality is preserved.
• Query Engine (Section 5): This section elaborates on the query execution process, including
how the system optimizes spatiotemporal queries and leverages distributed resources for
efficient execution.
• PostgreSQL Extension APIs (Section 6): This section details how we extend the PostgreSQL
database system to integrate distributed functionalities and enhance spatiotemporal query
processing through specific hooks.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2024.
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4 DISTRIBUTION MANAGER
The Distribution Manager incorporates a spatiotemporal-aware partitioning scheme that is specifi-
cally designed to optimize the handling of moving object trajectory data. It considers both the spatial
and temporal dimensions of trajectories, ensuring that data is distributed in a way that reduces
the cost of queries involving moving objects. Furthermore, it maintains shorter trajectories within
partitions for enhancing the performance of expensive trajectory operations (e.g., intersects).
This is particularly important for trajectory-based queries, such as proximity joins, kNN queries,
and MobilityDB trajectory functions, which require efficient access to the full moving object data.
The Distribution Manager orchestrates the transformation of a spatiotemporal relation into a

distributed counterpart. It employsMultidimensional Tiling to split a given domain of any number of
dimensions into a number of tiles. Intuitively, Multidimensional Tiling simply extends the traditional
range partitioning provided by DBMSs such as PostgreSQL or MySQL to 𝑛-dimensional data, in
our case to 2 or 3 dimensions for space and 1 dimension for time. The Multidimensional Tiling
process is a dual-faceted operation involving both horizontal and vertical splitting. Horizontally, it
reorganizes records within the relation, optimizing the distribution of data across distributed nodes.
Vertically, it splits the trajectory objects, i.e., MobilityDB’s temporal geometry type tgeompoint,
into multiple fragments, enabling a granular and balanced distribution of trajectory data.

4.1 Data Model
DistMobilityDB distributes MobilityDB tables into multirelations, denoted as 𝑅𝑑 , where 𝑑 represents
the dimensionality of the space in which the partitioned version of the relation R is defined. The
partitioning may thus be spatial (𝑑 = 2) 9, or spatiotemporal (𝑑 = 3). These multirelations follow
the multirelational algebra proposed by Ceri and Pelagatti [8]. Each multirelation 𝑅𝑑 comprises a
set of extended relations {𝑅1, 𝑅2, ..., 𝑅𝑘 }, where each 𝑅𝑖 represents a partition of the original dataset
alongside replicated indexes to maintain data integrity and query efficiency. Each extended relation
𝑅𝑖 encapsulates an 𝑛-dimensional bounding box𝑚𝑏𝑟𝑖 that is is variable in type, accommodating
temporal (𝑇 ), spatial (𝑆), or spatiotemporal (𝑆𝑇 ) dimensions, corresponding respectively to period
types in MobilityDB, box types in PostGIS for 2D and 3D, and tbox and stbox types in MobilityDB
for 2D, 3D, and 4D representations.

The extended relations are systematically arranged and connected through a Multidimensional
Tiling Scheme (𝑀𝑇𝑆), which is centralized in the coordinator node’s catalog. This representation
highlights the partitioning of data into smaller, manageable extended relations, each with its
bounding box and descriptive data, efficiently organized and indexed for optimal query performance.

4.2 Multidimensional Tiling
We use the example in Figure 2 to illustrate Multidimensional Tiling (MD tiling). Depending on the
data model, the four trajectories may be interpolated, as shown in the figure, or left as discrete points.
We discuss the more general case when they are interpolated. MD tiling on point representation
will then be a simplification of this discussion.

Trajectories may have other properties, which may be static (such as type, name, ...) or temporal
(such as speed, gear, ...). This can be abstracted as a table with a trajectory attribute and a set of
static or temporal attributes of any type. Common data partitioning methods will split such table
either horizontally into groups of moving objects, or vertically into groups of columns. The two
methods ignore the data proximity in the spatiotemporal space, and thus cannot help distributing
topological and proximity joins. Instead, we partition the spatiotemporal space in tiles and partition
the data accordingly. Figure 2 illustrates this process, where the table is partitioned both horizontally

9For simplicity we are not discussing 3d spatial features, although it is possible to distribute such data in this model.
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(dividing records across different tiles) and vertically (breaking trajectories into shorter, multiple
fragments), which enables efficient parallel processing.
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𝑜1 [(p(6, 8), t=0), (p(4, 8), t=3), (p(6, 8), t=6)]
𝑜2 [(p(4, 1), t=1), (p(4, 1), t=9)]
𝑜3 [(p(6, 1), t=0), (p(8, 1), t=6)]
𝑜4 [(p(8, 1), t=3), (p(5, 1), t=9)]

Fig. 2. Partitioning spatiotemporal trajectories using MD tiling.

Given a spatiotemporal space 𝑆 with 𝑑 dimensions , a MD tile scheme 𝑀𝑇𝑆 = {𝑇1 . . .𝑇𝑚} is a
partition of 𝑆 into a set of disjoint tiles 𝑇𝑖 = ⟨𝑅1, ..., 𝑅𝑘⟩, where 𝑅𝑖 = [lower, upper) is a continuous
range in the domain of the 𝑖th dimension. For temporal points, the number of dimensions is either 3
(2D spatial plus time) or 4 (3D spatial plus time). In the example of Figure 2, MTS consists of three
tiles 𝑇1 = ⟨[0, 5), [0, 10), [0, 7)⟩, 𝑇2 = ⟨[5, 10), [0, 10), [0, 7)⟩, and 𝑇3 = ⟨[0, 10), [0, 10), [7, 10)⟩.
Given a MD tile scheme 𝑀𝑇𝑆 = {𝑇1 . . .𝑇𝑚} and a trajectory object 𝑜 , we define the following

two functions:
• Split(𝑜,𝑀𝑇𝑆)→ ⋃

𝑇𝑗 ∈𝑀𝑇𝑆 {(𝑠𝑖 , 𝑗) | 𝑠𝑖 ∈ Intersection(𝑜,𝑇𝑗 )}, which vertically splits an input
trajectory 𝑜 into multiple disjoint fragments 𝑠𝑖 , every fragment is fully included in a MD tile
𝑇𝑗 . The result of this function is a set of pairs composed of a spatiotemporal fragment and the
number of the containing tile. This partitioning improves data locality for queries involving
spatial and temporal proximity, as fragments that belong to the same tile can be processed
together independently.
• Merge({𝑠1, . . . , 𝑠𝑘 }), which joins all the fragments of an object into a single continuous
trajectory. This is done by sorting the input objects in ascending order of their start time and
appending them. If some of the fragments are missing, an error is thrown.

The two functions are defined such that for every object 𝑜 it is always true that Merge(Split(𝑜,𝑀𝑇𝑆))
= 𝑜 . Notice that splitting might result in adding interpolated points at the tile boundaries for the
trajectories that span multiple tiles. During merging, the normalization algorithm in [51] will
automatically remove these boundary points.

To minimize the cost associated with splitting and merging trajectories, DistMobilityDB employs
several optimization strategies. First, the MD Tiling mechanism ensures that tiles are generated in a
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manner that minimizes the number of iterations required to perform the intersects operation on
each trajectory. The query planner initially filters data based on the tile’s bounding box, allowing
subsequent operations to focus solely on points within the tile’s boundaries, which significantly
improves efficiency. Additionally, we leverage parallel processing during the ingestion phase, where
trajectory data is processed by multiple worker nodes concurrently. This parallelism allows the
system to efficiently compute intersections and perform the necessary splits, which reduces the
overall ingestion time. Furthermore, the GiST spatiotemporal index is created, allowing for faster
lookup during the ingestion process and subsequent query operations.

Given a set of trajectory objects 𝑂 = {𝑜1, ..., 𝑜𝑛}, MD tiling is then defined as a two-step process:
(1) Finding a MD tile scheme𝑀𝑇𝑆 that (a) results in balanced data partitions, and (b) preserves

spatiotemporal proximity of objects within tiles and across neighbouring tiles.
(2) Partitions the set of trajectory objects 𝑂 using the computed 𝑀𝑇𝑆 . This is equivalent to

compute ∀𝑜𝑖 ∈ 𝑂, Split(𝑜𝑖 , 𝑀𝑇𝑆).
The MD tiling generation comprises two main phases, described next: (1) Tiling Strategy and (2)

Tile Assignment & Replication.

4.2.1 Tiling Strategy. The tiling strategy aims at efficiently partition the spatial or spatiotemporal
extent of a relation 𝑅 with 𝑑 dimensions into a series of non-overlapping tiles {𝑇1, ...,𝑇𝑚} where
each tile𝑇𝑖 = ⟨𝑇 1

𝑖 , . . . ,𝑇
𝑘
𝑖 ⟩ defines a continuous range𝑇

𝑗

𝑖
= [lower, upper) for each relation 𝑗 within

the domain of the 𝑖th dimension.
The main goal of tiling is to ensure load balancing, in order to maintain approximately equal

data size over all tiles. This enables queries to process concurrently, avoiding delays caused by
uneven data distribution. In practical terms, consider the AIS ship trajectory dataset [14], where
ship trajectories span a significant portion of the spatiotemporal extent. Therefore, in scenarios
with notable variations, such as a trajectory containing 30,000 points compared to another with
1,000,000 points, the performance implications become particularly pronounced.

To partition the data across tiles, there exist in the literature some methods including [30, 36, 44].
While the existing methods address certain aspects of spatial and temporal data management,
they do not give higher priority for ensuring load-balanced tiles in terms of both the number
of partitioned shapes and the number of points within each shape. Depending on how large the
imbalance is, it impact the performance of costly operations, e.g., intersection on long trajectories,
reducing the query efficiency. In Section 7.7.3, we compare the query performance using multiple
of these partitioning methods, and conclude that the different is indeed insignificant, because all of
them still achieve some level of balanced data partitioning.

Here we describe a tiling algorithm that is easy to implement, while ensuring load balancing. The
ChoosePivot function, described in Algorithm 1, illustrates it. This function seeks for each one of
the 𝑑 dimensions in the dataset an optimal pivot equalizing the distribution of overlapping shapes
and points across partitions. It begins by defining the search space between the lower and upper
bounds of the dimension of interest. The threshold 𝜖 plays a crucial role as a factor determining
the allowed deviation percentage of the tile size. If not provided by the user, a default value of 5% is
assumed.
The algorithm iteratively adjusts the pivot and recalculates the number of overlapping shapes

and points on each side of the pivot. The numInstants function efficiently determines the count of
overlapping points by leveraging a hash-partitioned table. This function achieves high performance
due to two main reasons: (1) it operates in parallel across worker partitions, enabling concurrent
processing, and (2) it validates overlaps using the local index within each partition, specifically the
GiST index provided by MobilityDB. The pivot is considered optimal and returned if the difference
between the left and right partitions falls within a tolerable range determined by the threshold
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𝜖 . Otherwise, the threshold 𝜖 is adapted based on feedback from previous iterations, with the
adjustment proportional to the imbalance between leftCount and rightCount. This ensures that
𝜖 grows more significantly when there is a larger discrepancy between the counts. The adaptive
increase calculation is governed by the conditional logic in line 21, which triggers when the count
difference is less than or equal to half the optimal tile size. This approach recalibrates 𝜖 by a factor
that increases with the relative imbalance between the partition counts. By using the minimum
between the existing 𝜖𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 and the new calculated value, the algorithm ensures a balanced rate
of adaptation.

Algorithm 1: Choosing the Pivot point
Input: Dataset 𝐷 , Tile size 𝑡𝑖𝑙𝑒𝑆𝑖𝑧𝑒 , Dimension 𝑑𝑖𝑚, Threshold 𝜖
Output: Pivot point 𝑝𝑖𝑣𝑜𝑡

1 start, end ← lowerBound(𝐷, 𝑑𝑖𝑚), upperBound(𝐷, 𝑑𝑖𝑚)
2 if 𝜖 is not given then
3 𝜖 ← 0.05 // Default is a 5% deviation of the tile size

4 pivot ← (start + end) / 2 // Initial pivot point

5 leftPivot, rightPivot ← start, end
6 while true do
7 leftCount ← numInstants(𝐷, leftPivot, pivot) : D ∈ [leftPivot, pivot)
8 rightCount ← numInstants(𝐷, pivot, rightPivot) : D ∈ [pivot, rightPivot)
9 if |leftCount − rightCount) | ≤ 𝑡𝑖𝑙𝑒𝑆𝑖𝑧𝑒 ∗ 𝜖 then
10 return pivot // Balanced pivot found

11 else if pivot > rightPivot then
12 leftPivot, rightPivot ← start, end
13 pivot ← (leftPivot + rightPivot)/2
14 𝜖 ← 𝜖𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 // Adaptive increase of epsilon

15 else if leftCount ≤ rightCount then
16 leftPivot ← pivot
17 pivot ← pivot + (rightPivot − pivot) ∗ 𝜖
18 else
19 rightPivot ← pivot
20 pivot ← pivot − (pivot − leftPivot) ∗ 𝜖

// Adaptive increase based on count difference

21 if | (leftCount − rightCount) | ≤ 𝑡𝑖𝑙𝑒𝑆𝑖𝑧𝑒 ∗ 𝜖 ∗ 0.5 then
22 𝜖adaptive ← 𝜖 ×min

(
𝜖adaptive, 1 + |leftCount − rightCount | / totalCount

)
After choosing the pivot point for every dimension, the partitions can be constructed by system-

atically dividing a relation 𝑅 into a Multidimensional Tiling Scheme (MTS), consisting of a set of
tiles, each encapsulating a portion of the dataset. The partitioning algorithm takes as input the
relation 𝑅 and the desired number of tiles, and determines the number of dimensions in the dataset.
The algorithm iterates through each desired tile, performing the following steps:

(1) Dimension Selection, which selects the next dimension for splitting. This selection is based
on the dimensions already processed and the evolving tile set, ensuring a systematic and
balanced approach.

(2) Pivot Point Determination, which invokes the ChoosePivot function to determine a pivot
point for the split along the chosen dimension. Employing a binary search approach, it
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explores all possible overlapping positions to identify a pivot with approximately the required
size with a tolerance 𝜖 of 5%. This meticulous pivot selection ensures precision and accuracy
in the subsequent splitting process.

(3) Data Partitioning, which splits the input data into two subsets, 𝑅left and 𝑅right , based on the
determined pivot point, to form Tileleft and Tileright , contributing to the Multidimensional
Tiling Scheme.

Example: The following example demonstrates how to achieve the tiling implementation using
a User-Defined Function, called create_spatiotemporal_distributed_table:

Distribute the trips table

1 SELECT create_spatiotemporal_distributed_table(

2 'trips', 16, 'distributed_trips', 'MD_Tiling');

In this case, the input table trips is partitioned into 16 tiles using multidimensional tiling, with
the result stored in the new distributed table distributed_trips.

4.2.2 Tile Assignment & Replication. The tile assignment phase is a critical step in optimizing
the distribution and replication of spatiotemporal tiles across worker nodes in DistMobilityDB.
The goal is to efficiently assign tiles to nodes based on their spatiotemporal characteristics, namely,
proximity, shared dimensions, and replication for fault tolerance, while promoting efficient data
processing and minimizing communication latency.

Algorithm 2: Tile Assignment and Replication
Input: Spatiotemporal Tiles 𝑇 , Worker Nodes 𝑁 , Replicas Factor 𝐹 , Weights 𝛼 , 𝛽
Output: Distributed and Replicated Tiles

1 foreach Node 𝑛 𝑗 ∈ 𝑁 do
2 foreach Tile 𝑡𝑖 ∈T do
3 if 𝑡𝑖 unassigned then
4 𝐶𝑖 ← Centroid(𝑡𝑖 ), 𝐶 𝑗 ← Centroid(𝑛 𝑗 )
5 𝑆𝑖 𝑗 ← Shared Dimensions(𝑛 𝑗 )
6 Cost (𝑡𝑖 , 𝑛 𝑗 ) ← 𝛼 · Dist(𝐶𝑖 ,𝐶 𝑗 ) + 𝛽 · 𝑆𝑖 𝑗
7 Assign tile 𝑡𝑘 with minimum Cost(𝑡𝑘 , 𝑛 𝑗 ) to 𝑛 𝑗
8 Replicate 𝑡𝑘 to adjacent nodes 𝑛𝑘 sharing most dimensions using the replicas factor 𝐹

The procedure described in algorithm 2 distributes tiles by iterating through the nodes until all
tiles are assigned. In each iteration, it evaluates unassigned tiles 𝑡𝑖 for their suitability to the current
node 𝑛 𝑗 . A cost function 𝐶𝑜𝑠𝑡 (𝑡𝑖 , 𝑛 𝑗 ) is computed, incorporating the Euclidean distance between
the centroid of the tile, 𝐶𝑖 , and the centroid of the node, 𝐶 𝑗 . Additionally, the number of shared
dimensions, 𝑆ij , is considered. Two weighting factors 𝛼 and 𝛽 allow fine-tuning the algorithm
based on the importance of proximity and shared dimensions. The algorithm selects the tile 𝑡𝑘
with the minimum cost for assignment to the current node 𝑛 𝑗 . Replication of the assigned tile is
then performed to adjacent nodes that share the most dimensions with the assigned node. This
replication strategy enhances fault tolerance and ensures redundancy within the distributed system.
This proactive redundancy is leveraged by the planner, significantly mitigating network I/O during
the execution of non-colocated join queries. Additionally, the weighting and replicas factors can be
tuned through SQL commands. Users can adjust them dynamically by executing commands such as
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SET tile_proximity = TRUE, SET tile_shared_dimensions = TRUE, and SET tile_replicas
= 1, depending on the optimization goals.

5 QUERY ENGINE
The Query Engine is optimized for large-scale MODs by supporting complex trajectory-based
queries and proximity-based joins unique to moving object databases. Unlike generic spatiotemporal
systems, it handles dynamic object movements efficiently. We have extended the query planner
and executor to handle and efficiently execute trajectory-specific queries, ensuring low-latency
responses for moving object tracking and analysis.

We consider distributed SQL architectures in which the nodes are themselves SQL databases that
can plan and execute SQL queries on local shards. In this setting, the distributed query planner is
primarily concerned with breaking down a query on distributed tables into a plan that consists
of: (1) sets of SQL queries that run in parallel on shards, (2) network transfer primitives such as
collecting, broadcast, or reshuffling intermediate results, (3) a SQL query that combines intermediate
results on the coordinator. The local SQL queries are constructed from the multirelational operator
tree generated by the distributed query optimizer, based on the 1:1 mapping between relational
algebra and SQL. The local queries are then planned and executed by the worker nodes using the
regular SQL optimizer, which can take advantage of local (spatial) indexes.

In our approach, we partition the database twice: once using horizontal partitioning (e.g., using
the standard hash partitioning provided by Citus), and once using MD tiling. This has the overhead
of duplicating the distributed table twice. We think however that this overhead is comparable to
building an index, where in this case it helps distributing more types of queries.
In order to decide which distributed copy to use, the query is first analyzed. If spatiotemporal

selections or joins are identified, we use MD tiling copy. For all other queries, hash partitioning is
used. This approach is common in databases, where one or several indices are created to speed up
certain read operations. This enables distributing both spatiotemporal queries as well as trajectory
queries.

When relations have multiple representations (e.g., hash partitioning and MD tiling) or the query
involves complex joins, the optimizer generates all possible variants of the operator tree and selects
the one that has the lowest cost. Precise cost estimation is a complex topic which is beyond the
scope of this paper, but simple heuristics that consider how much work is pushed down generally
perform well.

5.1 The merge Operator
A plan for a query on a distributed relation that uses MD tiling requires a merge operator in the
multirelational operator tree. This operator groups the fragments by their primary key, returns
the value of each attribute, and applies the Merge function defined in Section 4.2 on incoming
fragments to reconstruct a trajectory (if needed). When converting the operator tree to SQL, the
merge operator would be represented as a DISTINCT or GROUP BY on the tripId.
The merge operator is placed on top of the collect operator that fetches data from the nodes.

Optimization rules then need to be applied taking the semantics of the merge operator into account.
This is explained in the following sections.

5.2 Selection Optimization
In the presence of MD tiling, the selection operator is inserted directly above the merge operator
prior to optimization. Some selection functions on trajectories can be pushed down below the
merge and benefit from the properties of MD tiling. In particular, a selection operator that filters
trajectories based on the intersection with a particular area, referred to as range query, can be
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translated into an equivalent selection on tiles and pushed down. Computing the intersection for
individual trajectories is then parallelized at the fragment level to minimize the overall execution
time. In addition, the collect operator can be extended to prune away tiles that do not intersect
with the query range, which reduces the overall amount of work. Figure 3 illustrates the general
strategy for such a query. On the left, we see the typical execution strategy for non-distributed
tables, where the selection is pushed directly to the relation. In the distributed case, shown in the
middle, data is first collected and merged at the coordinator before applying the selection. However,
this approach can be inefficient due to the overhead of collecting data at the coordinator. It is used
only when the selection operation requires processing the entire trajectory. On the right, the figure
presents a more efficient strategy where the selection is pushed down to the trajectory fragments
within the distributed tiles. This approach enhances performance by minimizing data movement
and applying operations on shorter trajectory fragments, leading to faster processing.

scan (table) 

selection  

scan (tile) 

selection 

collect

merge

scan (tile) 

selection 

collect

merge

OptimizeDistribute

Fig. 3. Left is a plan for a simple selection query done centrally without distribution. In the middle is a naive
but correct distributed execution plan, where the data is distributed in tiles at nodes, and the plan collects all
data at the coordinator and performs the selection. The plan in the right utilizes the equivalance rule that
selections can be pushed down to the workers and done in parallel, then the result are collected and merged
at the coordinator. The dashed horizontal lines indicate the boundary between the coordinator node, and the
data and processing nodes

Consider a distributed table trips(tripId, trip) where tripId is the primary key and trip is a
spatiotemporal trajectory. An example of a range query is as follows:

Q1) Find trips that have passed a specific region of interest (ROI)

1 SELECT tripId FROM distributed_trips

2 WHERE intersects(trip, 'Polygon((...))')

TheWHERE clause contains a range predicate that intersects the spatiotemporal trip attribute
with a spatial polygon. Since the SELECT clause does not include operations that need the whole
trajectory, it can be pushed down below themerge operator, which will only remove duplicate results
(i.e., tripId) from different fragments of the same trip. Such selections are always commutative with
the collect operator and can hence be parallelized across shards.

A selection operator that operates on the whole trajectory is not commutative with merge, since
it can only be applied after the trajectory is reconstructed from the fragments. In the following
example, the selection is done based on the trajectory length, a function that requires the whole
trajectory.

Q2) Find trips that have traveled a distance exceeding 10 km

1 SELECT tripId FROM distributed_trips

2 WHERE length(trip) > 10000
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In this case, the plan that uses a hash-partitioned table will be considered cheaper, since the
selection can be pushed down.
Another case in which a selection cannot be pushed down below the merge is when the whole

trajectory is used in other parts of the query (e.g., it is returned in the SELECT clause). The reason is
that the pushed-down selection will only return a subset of the fragments, and thus, the trajectory
cannot be fully reconstructed from the results. The next query illustrates an example of this case.

Q3) Find the complete trajectory of trips that have passed a specific region of interest

1 SELECT trip FROM distributed_trips

2 WHERE intersects(trip, 'Polygon((...))')

While the selection is of the range type, which can be pushed down, the whole trajectory in the
SELECT clause cannot be reconstructed from the fragments obtained by executing this query on
the tiles. That leaves the planner with two possibilities: (1) use the hash-partitioned representation,
losing the benefits of fragment-level parallelism and pruning, or (2) collect only the unique identifier
of the trajectories using MD tiling and then collect the full trajectories by joining with the hash-
partitioned table. In the second option, the optimizer can also choose between a reshuffle or a
broadcast operation based on the size of the result set (the two plans in Figure 4). Both operations
allow a subsequent join to be pushed down.

scan 
(tile) 

selection 

collect

merge

SELECT tripId 
FROM ...

join
tripId=tripId

scan 
(shard) 

broadcast

scan 

collect

scan 
(shard) 

reshuffle

merge

collect

scan 
(tile) 

selection 

join
tripId=tripId

SELECT tripId 
FROM ...

Fig. 4. The broadcast (left) v.s. reshuffle (right) approaches for collecting complete trajectory objects in the
results. The broadcast operation, suited for small result sets, collects and merges intermediate results at the
coordinator, then broadcasts them to all nodes to minimize further data reshuffling. In contrast, the reshuffle
operation, used for large result sets, redistributes intermediate results to the workers before performing the
merge operation.

Figure 4 illustrates two different plans to handling this query. The broadcast operation is used
when the result set is relatively small. In this approach, the intermediate results from the shards
(distributed data nodes) are first collected and merged at the coordinator. Then, these results are
broadcast back to all the nodes. This ensures that all nodes have the same intermediate results
to work with, minimizing the need for further data reshuffling. The query tree transformation
for broadcast is given in the left side of the figure and involves collecting, merging, and then
broadcasting the selected tripIds, as shown in the subplan enclosed in curly brackets. We denote by
scan(tile) the access to the MD tiling version of the data, and we denote by scan(shard) the access
to the hash partitioned version.
On the other hand, when the result set is large, a reshuffle operation is preferred, as shown

in the right side of the figure. Reshuffling also distributes the intermediate results to workers
but, in contrast to broadcasting, the data movement occurs among the workers directly, without
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involving the coordinator. When reshuffling directly after the selection, we skip themerge normally
performed after the collection. We will need to compensate for duplicate trip IDs being considered
for joining by executing the merge step after the reshuffle operation.

5.3 Supported UserQueries
In this section, we enumerate several state-of-the-art queries that users can execute onmultirelations.
These queries will be assessed in the experimental section using various datasets. The subsequent
schema will be employed to elucidate the queries:

Database schema

1 CREATE TABLE shipsFishing(tripId INTEGER PRIMARY KEY, shipId INTEGER, trip TGEOM (POINT))

2 CREATE TABLE shipsCargo(tripId INTEGER PRIMARY KEY, shipId INTEGER, trip TGEOM (POINT))

3 CREATE TABLE ports(portId INTEGER PRIMARY KEY, geom GEOMETRY (POLYGON))

The tables shipsFishing and shipsCargo are multirelations partitioned using three dimensions (x,
y, t). Both tables include the trip attribute of temporal point type. The ports table, a PostGIS relation,
contains a geom attribute of geometry type and serves as a smaller reference table replicated across
all worker nodes.
Range Query - Range(q,R): Given a query range 𝑞 and a multirelation 𝑅 = {𝑟1, 𝑟2, ..., 𝑟𝑖 },

range(q,R) finds all objects 𝑜 ∈ 𝑅 that overlap the range defined by 𝑞, such that

Range(𝑞, 𝑅) :=
⋃
𝑟𝑖 ∈𝑅
{∀𝑜 ∈ 𝑟𝑖 | 𝑜 ∈ 𝑞, 𝑜 ∈ Overlapping(𝑞, 𝑟𝑖 )}

The query range can be temporal-only, spatial-only, or spatiotemporal defined by any of the PostGIS
(e.g., geometry(polygon)) or MobilityDB (e.g., period, tgeom(point)) types. An example of how the
user writes a range query is as follows:

Find ships that have passed a specific region of interest (ROI)

1 SELECT shipId, tripId FROM shipsFishing

2 WHERE intersects(trip, 'Polygon((...))')

TheWHERE clause contains a range predicate that intersects the spatiotemporal trip attribute
with a spatial polygon.

Intersect-Join Query- 𝑅 Z𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠 𝑆 : Let 𝑅 = {𝑟1, 𝑟2, ..., 𝑟𝑖 } and 𝑆 = {𝑠1, 𝑠2, ..., 𝑠 𝑗 } be two
multirelations of spatiotemporal objects 𝑜𝑟𝑖 , 𝑜𝑠 𝑗 and the predicate is any of the intersect functions
of PostGIS and MobilityDB. The query returns all pairs of objects that have intersections. The
formal representation is as follows:

𝑅 ZIntersects 𝑆 := {(𝑟𝑖 , 𝑠 𝑗 ) ∈ (𝑅 × 𝑆) | pair(𝑜𝑟𝑖 , 𝑜𝑠 𝑗 ) ∈ Intersect(𝑟𝑖 , 𝑠𝑖 )}

As an example, consider the following query.

Find ships involved in accidents through their trips

1 SELECT R.tripId, S.tripId FROM shipsCargo R, shipsFishing S

2 WHERE intersects(R.trip, S.trip)

The intersects predicate verifies whether the pair of objects are spatiotemporal intersect or
not. This query will be executed as a colocated join query if the two multirelations share the same
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tiling scheme𝑀𝑇𝑆 however it will be treated as a non-colocated join query if the tiling scheme is
not the same.

Distance-Join Query-𝑅 Z𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑆 : Let𝑅 = 𝑟1, 𝑟2, ..., 𝑟𝑖 and 𝑆 = 𝑠1, 𝑠2, ..., 𝑠𝑖 be twomultirelations
of spatiotemporal objects 𝑜 and a distance threshold 𝑑 . The user can use any distance function in
MobilityDB. The result of the 𝑑 distance join query is the set of objects containing all the possible
different pairs from that have a distance of each other smaller than, or equal to d:

𝑅 ZDistance 𝑆 := {(𝑟𝑖 , 𝑠 𝑗 ) ∈ (𝑅 × 𝑆) | pair(𝑜𝑟𝑖 , 𝑜𝑠 𝑗 ) ∈ Dist(𝑟𝑖 , 𝑠𝑖 ) ≤ 𝑑}
As an example, consider the following query.

Find ships that are closer than or equal to 500 meters

1 SELECT R.tripId, S.tripId FROM shipsCargo R, shipsFishing S

2 WHERE edwithin(R.trip, S.trip, 500)

The dwithin predicate returns true when the first two arguments are closer than or equal to the
distance threshold in the third parameter, here 10 meters. This query thus reports the pairs of trips
that have ever been at a distance of 10 meters or less to each other.

K Nearest Neighbor Search Query- 𝐾𝑁𝑁𝑆 (𝑅,𝑞, 𝑘): Given a multirelation 𝑅 = {𝑟1, 𝑟2, ..., 𝑟𝑖 }, a
query object 𝑞 (e.g., point, trajectory), and a number 𝑘 . The result of the kNN query with respect to
the query object is an ordered set of objects 𝑜 ∈ 𝑅 with the k smallest distances from 𝑞. The formal
definition is as follows:

KNNS(𝑅,𝑞, 𝑘) := {∀𝑜 ∈ 𝑅 | 𝑟𝑖 ∈ 𝑅 :
Dist(𝑟𝑖 , 𝑞) ≤ Dist(𝑟𝑖+1, 𝑞) ≤ . . . ≤ Dist(𝑟𝑛, 𝑞), |Dist(𝑅,𝑞) | ≤ 𝑘}

As an example, consider the following query.

Find the closest K trips to a given point

1 SELECT tripId FROM shipsCargo

2 ORDER BY distance(trip, 'Point(...)') asc

3 LIMIT k

The distance function computes the distance between each ship trajectory and a given point
object. Executing this query employs a two-phase strategy: initially collecting distances, followed
by the subsequent selection of the top k in the second phase. The query is planned using the Filer
and Refine strategy, described in Section 5.4.

5.4 Planner Strategies
A pivotal aspect of DistMobilityDB is the query planner that utilizes MD tiling, offering significant
advantages in the distribution of spatial, temporal, and spatiotemporal joins. Through themeticulous
partitioning of data based on spatial and temporal dimensions, MD tiling transforms spatiotemporal
join queries into colocated joins, eliminating the need for extensive data reshuffling. Notably,
the planner leverages stored catalog information detailing the spatiotemporal extent of the tiles,
enabling a strategic approach to minimize data reshuffling for other spatiotemporal join operations.
This proactive strategy enhances query performance and optimizes the distributed processing of
complex spatial and temporal relationships within MobilityDB.

This section elucidates five key strategies integral to the query planner of DistMobilityDB query
planner, showcasing the system’s prowess in handling spatial, temporal, and spatiotemporal joins
seamlessly.
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5.4.1 Early-Stage Filter. We propose an effective filter operation that early prunes a large amount
of data. It is triggered for all queries with predicates that require a topological comparison between
two objects. It adds the necessary filtering predicates (e.g., overlaps) to trigger the local index
before expensive operations are performed. This strategy aims to avoid unnecessary memory, CPU,
connections, and network costs.

Consider a query𝑄 that involves a topological comparison between objects𝐴 and 𝐵, the strategy
identifies relevant predicates 𝑃 for early application in the query process. This is denoted as:

𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝑛} where each 𝑝𝑖 is a topological predicate applicable to 𝐴 and 𝐵
Using the identified predicates 𝑃 , the strategy utilizes local indexes to effectively prune the dataset.
Let 𝐷 represent the dataset, and 𝐷 ′ denote the pruned dataset after applying predicate pushdown.
The pruning process can be expressed as:

𝐷 ′ = {𝑑 | 𝑑 ∈ 𝐷, ∃𝑝 ∈ 𝑃 : 𝑝 (𝑑)}
Here, 𝑝 (𝑑) represents the application of predicate 𝑝 to data element 𝑑 , filtering out irrelevant
entries.

5.4.2 Filter and Refine. Consider a query 𝑄 that requires a two-phase approach for execution,
necessitating the division of the query into two distinct operations. The initial query acts as a
filtering operation employing the Early-Stage Filter strategy. Additionally, it involves modifications
to the query clauses, such as transferring the distance operation from the Orderby Clause to the
Selection Clause, allowing the utilization of the results in another query. The second query functions
as a post-processing operation.
A concrete example is the kNN query, which entails computing distances between each spa-

tiotemporal object in a multirelation and a specific spatial object. In this case, the query is processed
in two steps: (1) Filter the Multidimensional Tiling Scheme (𝑀𝑇𝑆) to eliminate unnecessary tiles,
pushing the query down to local tiles after incorporating the distance function into the query
selection; (2) Select k objects with minimum distances. The local index is leveraged in Step 1 to
expedite the KNN selection process. In Step 2, the query is finalized by aggregating all results and
selecting the top k. Figure 5 provides a visual representation of how this query is planned.

(a) Step1: Filter and push down (b) Step 2: Refinement

Fig. 5. An example kNN search query, k=2. (a) the query node q is highlighted as a diamond. The relevant
shards are identified and highlighted in gray. The query is only pushed to these shards. (b) per shard, the
top two results are computed in parallel (highlighted in black circles). The coordinator will then collect and
merge these results to select the global top k among them (highlighted in red circles)
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5.4.3 Broadcast Join. In scenarios involving a join query 𝑄 between a large multirelation 𝑅
and a smaller-sized relation 𝑆 , the Broadcast Join strategy proves effective. This method involves
replicating the smaller table across all worker nodes, allowing for parallel computation of the join
operation. The coordinator subsequently aggregates and collects the results. The Broadcast Join
operation is expressed as: 𝑅 ⊲⊳intersects 𝑆 . Here, ⊲⊳ signifies the join operation, and intersects denotes
the spatiotemporal intersection condition. It is crucial to highlight that workers have the ability to
optimize their local queries by leveraging available spatiotemporal indexes. This approach often
leads to faster results, primarily due to the usage of the local MobilityDB indexes. Additionally, the
use of bounding boxes for fragments, compared to full trajectories, enables more effective pruning.

As an illustrative example, consider the query:

Find ships that have traveled through a specific set of ports

1 SELECT t1.shipId, t.tripId, p.portId FROM shipsFishing t, ports p

2 WHERE intersects(t.trip, p.geom)

If the ports relation is replicated in all worker nodes, this query will compute the intersection join
locally between the fragments in every tile, and then report all intersecting pairs to the coordinator.
The merging in the coordinator will remove duplicate results.

5.4.4 Colocated Join. Consider a query 𝑄 requiring a join operation between multirelations
𝑅1 Z𝑗𝑝1 𝑅2 Z𝑗𝑝2 . . . Z𝑗𝑝𝑛 𝑅𝑁 , each characterized by a consistent Multidimensional Tiling Scheme
(𝑀𝑇𝑆) and an equal number of tiles 𝑇 . A join operation is considered colocated if and only if it can
be executed without necessitating the redistribution or broadcasting of the data slices across nodes.
Formally, the colocated join condition can be expressed as:

Colocated(Z𝑛
𝑖=1 𝑅𝑖 ) =

{
1, if ∀𝑖, tiles in 𝑅𝑖 reside on a common node with matching boundaries
0, otherwise

The colocated join operation consists of two primary steps: filtering and refinement. In the filtering
step, a filter operation 𝐹 is applied to each multirelation to identify candidate tiles based on a
specific predicate. The filtering process is formally defined as:

𝐹 (𝑅𝑖 ) = {𝑡 | 𝑡 ∈ 𝑅𝑖 ∧ predicate(𝑡)}

where 𝑡 represents a tile in multirelation 𝑅𝑖 and predicate(𝑡) is the condition that identifies relevant
tiles (e.g., spatial overlap). This step efficiently narrows down the search space by leveraging indexes,
thereby speeding up the join operation. Following the filtering, the refinement step involves applying
additional predicates to the filtered tile pairs to ensure accurate results. This step is essential for
resolving the details of the join and is represented as:

Refine(𝐹 (𝑅𝑖 ), 𝐹 (𝑅 𝑗 )) = {(𝑡𝑖 , 𝑡 𝑗 ) | 𝑡𝑖 ∈ 𝐹 (𝑅𝑖 ), 𝑡 𝑗 ∈ 𝐹 (𝑅 𝑗 ), joinPredicate(𝑡𝑖 , 𝑡 𝑗 )}

where joinPredicate(𝑡𝑖 , 𝑡 𝑗 ) represents a join condition such as intersects applied to the pairs of
tiles (𝑡𝑖 , 𝑡 𝑗 ) from the filtered sets of 𝑅𝑖 and 𝑅 𝑗 respectively. These steps collectively ensure that the
colocated join operation is executed efficiently, leveraging the locality of data and minimizing the
need for extensive data movement across the network.

An illustrative example of a colocated join query, along with its succinct corresponding plan, is
depicted in Figure 6. This figure helps to understand the execution strategy of colocated joins.
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Find trips that have spatiotemporal intersection

1 SELECT a.tripId , b. tripId
2 FROM shipsFishing a, shipsFishing b
3 WHERE intersects(a. trip , b. trip ) scan

(tile)

join

scan
(tile)

collect

merge

Fig. 6. Left is a self-join spatiotemporal intersection query. Right represents the corresponding query plan,
where the spatiotemporal intersection is computed between fragments within a single tile, and the join
operation is pushed down to the workers for execution.

5.4.5 Non-colocated Join. This strategy is essential for executing complex queries 𝑄 across
multiple multirelations 𝑅1 Z𝑗𝑝1 𝑅2 Z𝑗𝑝2 . . . Z𝑗𝑝𝑛 𝑅𝑁 , especially when each relation is partitioned
using its own Multidimensional Tiling Scheme (𝑀𝑇𝑆) with a distinct set of tiles 𝑇 . Such joins
are characteristic for their requirement to operate across tiles distributed over various worker
nodes, often necessitated by topological predicates like distance joins. The non-colocated join
involves three steps: (1) reshuffling, (2) filtering, and (3) refinement. The reshuffling step involves
reorganizing data across nodes to ensure related tiles from different multirelations are brought to a
common computational context. The reshuffling function R can be expressed as:

R(𝑅𝑖 , 𝑅 𝑗 ) =
⋃

𝑡𝑖 ∈𝑅𝑖 ,𝑡 𝑗 ∈𝑅 𝑗

Reshuffle(𝑡𝑖 , 𝑡 𝑗 )

where Reshuffle(𝑡𝑖 , 𝑡 𝑗 ) aligns tiles 𝑡𝑖 and 𝑡 𝑗 across different nodes. The reshuffling process is engi-
neered to minimize data movement across the cluster, obviating the necessity for a comprehensive
reshuffling process. In this approach, only the intersecting fragment of relation 𝑅𝑖 with the Multi-
dimensional Tiling Scheme (𝑀𝑇𝑆𝑅 𝑗

) of relation 𝑅 𝑗 undergoes relocation. The reshuffling can be
expressed as:

𝐼 (𝑅𝑖 , 𝑀𝑇𝑆𝑅 𝑗
) = {𝑟𝑖 | 𝑟𝑖 ∈ 𝑅𝑖 , ∃𝑟 𝑗 ∈ 𝑅 𝑗 : Intersects(𝑟𝑖 , 𝑀𝑇𝑆𝑅 𝑗

(𝑟 𝑗 ))}

where 𝐼 (𝑅𝑖 , 𝑀𝑇𝑆𝑅 𝑗
) represents the set of fragments in 𝑅𝑖 that intersect with any part of 𝑀𝑇𝑆𝑅 𝑗

.
This method is optimal in scenarios with significant overlap between datasets, such as in large-scale
geospatial analyses involving intersecting regions. It reduces computational load and expedites the
query by focusing on areas of overlap.
In heterogeneous data environments, characterized by significant variations in tiling methods

between 𝑅𝑖 and 𝑅 𝑗 , or in scenarios where the absence of statistical information, can result in
inefficiencies, a different approach is required. This involves a complete reshuffling for one of
the relations using the Multidimensional Tiling Scheme (𝑀𝑇𝑆) of the other relation. For instance,
consider a scenario where relation 𝑅𝑖 covers a small extent while relation 𝑅 𝑗 covers a larger extent.
In such cases, a complete data reshuffling for 𝑅 𝑗 is done only for the data that overlaps with the
𝑀𝑇𝑆 of relation 𝑅𝑖 . This approach ensures better parallelization of the processing. By aligning
the tiling schemes, this method alleviates challenges associated with diverse data distributions,
thereby fostering a more streamlined query execution process. The Filtering and Refinement steps
are similar to what was explained in the colocated join.

For illustration, consider Figure 7, where two relations 𝑅1 and 𝑅2 are depicted with different tiling
schemes. Consequently, tiles such as 𝑅1.𝑡𝑖𝑙𝑒1 and 𝑅2.𝑡𝑖𝑙𝑒1 may be situated on different workers.
Assume a query that joins the two relations on the intersection of their trajectories. Therefore,

the query targets the spatiotemporal intersection between the tiles, rather than the entire tiles.
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MBR(R1.tile1)

MBR(R2.tile1)  MBR(R2.tile2)                  

(a) Intersection Join

MBR(R1.tile1)

MBR(R2.tile1) MBR(R2.tile2)                  

(b) Distance Join

Fig. 7. Intersection and distance join on different MTS: The boxes illustrate tiles from the multirelations 𝑅1
and 𝑅2, highlighted in white, with their spatiotemporal bounding boxes defined using the MBR function. (a)
Shows the intersection areas between tiles, shown in gray, which contain the data used for query processing.
(b) Illustrates a distance join, where tile boundaries are expanded by the query distance, highlighted in gray
with dashed borders.

As shown in left part of Figure 7, only the common part of the extents of the two tiles need to be
copied.
Handling Intersection and Distance Joins: For intersection joins, the system targets the

spatiotemporal intersection between the tiles. Assuming a join operation between 𝑅1.tile1 and 𝑅2,
the operation can be mathematically represented as:

𝑅1 .tile1 Z 𝑅2 = 𝑅1.tile1 Z
𝑇⋃
𝑘=1

IntersectionMBRs(𝑅1.tile1, 𝑅2.tile𝑘 )

Where IntersectionMBRs(𝑅1.tile1, 𝑅2 .tile𝑘 ) calculates the intersecting extents between the tiles
from 𝑅1 and 𝑅2.

In cases involving distance joins, the tiles are expanded by a given distance before assessing over-
laps. This ensures that all relevant spatial interactions within the specified distance are considered.
The expansion and subsequent join can be expressed as:

𝑅1.tile1 Z 𝑅2 = 𝑅1 .tile1 Z
𝑇⋃
𝑘=1

ExpandedIntersectionMBRs(𝑅1.tile1, 𝑅2.tile𝑘 , distance)

Here, ExpandedIntersectionMBRs(𝑅1.tile1, 𝑅2.tile𝑘 , distance) denotes the operation to calculate the
intersecting extents between the expanded 𝑅1.tile1 and tiles from 𝑅2.

These strategies collectively enable the system to perform complex non-colocated joins, involving
a variety of spatial, temporal, and spatiotemporal operations, across distributed nodes efficiently
and accurately. For instance, consider the following query:

Find fishing ships that were within 500m of cargo ships

1 SELECT DISTINCT t1.tripId AS tripId1, t2.tripId AS tripId2

2 FROM shipsFishing t1, shipsCargo t2

3 WHERE edwithin(t1.trip, t2.trip, 500)

The edwithin predicate returns true when the first two arguments are closer than or equal to the
distance threshold in the third parameter, here 10 meters. This query thus reports the pairs of trips
that have ever been at a distance of 10 meters or less to each other. According to the non-colocated
join strategy, the query planner distributes this query using the plan in Figure 8. The subplan on the
right selects the subfragments in the neighbouring tiles that fall within in the given distance range.
The result is then reshuffled to the corresponding workers, and the joins are computed locally.
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scan 
(tile) 

join
tdwithin()

scan 
(tile) 

reshuffle

scan 

collect

join
tdwithin()

scan 
(tile) 

scan 
(tile)

union

join
atBox()

merge

intersectionMBRs

Fig. 8. Non-colocated distance joins that joins tiles with themselves and with reshuffled subfragments from
the IntersectionMBRs

If the join predicate is commutative, as in this example, it suffices to copy the overlapping part
from one tile to the second, but not the other way around. To achieve this optimization, the query
optimizer needs to know about the commutativity of join predicates. This is decided based on the
cost of the copying direction and the used predicates and operations.

5.5 ParallelQuery Execution
DistMobilityDB achieves parallel query execution through a combination of local execution on
shards and distributed query optimization. When a query is submitted, the system generates a
distributed query plan that divides the query into sub-queries, which are then executed in parallel
across different nodes. Each node executes its portion of the query independently using local
spatiotemporal indexes, and intermediate results are later combined. For queries involving large
joins, such as proximity joins or distance-based joins, the system parallelizes execution by ensuring
that the required data is pre-distributed based on spatiotemporal locality to reduce the need for
costly data reshuffling.

Moreover, the planner decides whether to perform colocated or non-colocated joins based on the
query type and data distribution. Colocated joins enable queries to be executed in parallel directly
on local fragments, while non-colocated joins require a reshuffling of data across nodes but still
execute fragments independently in parallel. The use of background workers for asynchronous
tasks such as data replication, synchronization, and maintenance further enhances the system’s
ability to parallelize operations.

5.6 Abstract Syntax Tree Transformation
The first step in our implementation takes the SQL query and produces its abstract syntax tree
(AST) using the PostgreSQL query parser. In this step, the query is syntactically checked, and
optimized with respect to the global schema in the coordinator node. Therefore, this tree does
not include the notion of distribution. We enrich this AST with annotations about the distributed
tables, partitioning scheme (e.g., MD tiling), replicated tables, spatiotemporal types, and operations,
etc. These annotations give the following steps an understanding of the semantics of the query
elements and enable the matching of the patterns that are candidate to optimization.
The annotated AST is then analyzed to match the selection and join patterns for MD tiling

described in Section 5. Each query pattern produces an execution strategy composed of multiple
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SQL queries to Citus. These include queries to copy the data across shards, in the case of non-
colocated joins, and queries to do selection and colocated joins. The planner then delegates to Citus
the distribution of each of these queries. When the planner is presented with a query that does not
match any of the query patterns, it directly forwards the query to Citus to use the standard hash
partitioning.
During planning, data localization logic is used to decide which tiles, hence workers, may

contribute to the query result. For certain types of queries, it is possible to localize the search into
a spatial, temporal, or spatiotemporal range in the multidimensional data space. This step will use
the MD tiling catalogue to identify the partitions that overlap this range and the nodes that store
these partitions. Only these partitions will need to be involved in the query execution. The AST
tree is further annotated with this information.

Consider the non-colocated join query in Section 5.4. After the AST transformation, the planner
will detect that it is a non-colocated join query and will produce Citus queries corresponding to
the plan in Figure 8. The data reshuffle subplan (the rightmost one in Figure 8) will be translated
into this query:

Reshuffling query in DistMobilityDB

1 WITH intersectionMBRs AS (

2 SELECT t1.tile AS tile1, t2.tile AS tile2,

3 intersection(t2.bbox, expand(t1.bbox, 10)) AS intersectionBox

4 FROM catalogue t1, catalogue t2

5 WHERE t1.tile < t2.tile AND t1.bbox && expandSpatial(t2.bbox, 500)

6 ORDER BY tile1,tile2 )

7 INSERT INTO trips_reshuffled

8 SELECT t.carId, t.tripId, t.tile1, atSTBox(t.Trip, c.intersectionBox)

9 FROM trips t, intersectionMBRs c

10 WHERE t.tile = c.tile2 AND t.trip && c.intersectionBox;

This query will be forwarded to Citus, which will distribute it over the network nodes. The
CTE expands every tile with the given distance in the user query, and produces the boxes that
overlap with the neighbours. The INSERT ... SELECT will populate the (temporary) distributed
table trips_reshuffled with the subfragments (atSTBox(.,.)) that fall in these overlap boxes.
Citus will reshuffle the results using hash partitioning according to the t.tile1 key in the SELECT
clause. In this way, every tile will receive all the subfragments from its neighbouring tiles inside its
partition of the trips_reshuffled table.

Compiled query in DistMobilityDB

1 SELECT DISTINCT T1.tripId AS tripId1, T2.tripId AS tripId2

2 FROM trips t1, trips t2

3 WHERE t1.tile = t2.tile AND t1.trip && expandSpatial(t2.trip, 500)

4 AND edwithin(t1.trip, t2.trip, 500)

5 UNION

6 SELECT DISTINCT T1.tripId AS tripId1, T2.tripId AS tripId2

7 FROM trips t1, trips_reshuffled t2

8 WHERE t1.tile = t2.tile AND t1.trip && expandSpatial(T2.trip, 500)

9 AND edwithin(T1.trip, T2.trip, 500);
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The two queries in the UNION are similar to the original user query except for the additional join
condition t1.tile=t2.tile. With this condition, Citus understands that the join is colocated and
is able to distribute the query.

A shortened version of the generated query plan is as follows:

Query plan in DistMobilityDB

1 Distributed Query Plan (Distance/Near Join Query):

2 -> Scanning the catalog: (MD tiling)

3 -> Total number of partitions: 128

4 -> Repartitioning:

5 -> Predicate: edwithin, Type: distance, Distance: 500

6 -> Number of reshuffled tuples: 17031 over 128 shards

7 -> Merge:

8 -> Collect:

9 -> Number of Parallel Tasks: 256

10 -> Self Join:

11 -> Task 1 (WorkerNode1 - Local Plan):

12 -> Nested Loop

13 -> Seq Scan on trips_shard_1 t2

14 -> Index Scan using trips_shard_1_spgist_idx on trips_shard_1

15 -> Index Cond: (trip && expandspatial((t2.trip), 500))

16 -> Filter: (edwithin(trip, t2.trip, 500))

17 -> Neighbour Join:

18 -> Task 1 (WorkerNode1 - Local Plan):

19 -> Nested Loop

20 -> Seq Scan on neighbors_trips_shard_1 t2

21 -> Index Scan using trips_shard_1_spgist_idx on trips_shard_1

22 -> Index Cond: (trip && expandspatial((t2.trip), 500))

23 -> Filter: (edwithin(trip, t2.trip, 500))

The planner first scans the catalog (line 2) to get information about the distributed table scheme.
Then, based on the detected distance predicate, it recognizes the query type and develops a repar-
titioning plan(Lines 4-6) for it. In line 9, the planner reveals that there are 256 colocated parallel
queries that are conducted across all worker nodes, half of them are self joins and the others
are a join between the neighbors of each shard. As shown, the plan was designed to trigger the
index (Lines 14,21) by adding the necessary index predicates (Lines 15,22) to prune data before
performing the expensive operations (Lines 16,23). The expandSpatial and overlapping(&&)
predicates are added by the planner to verify the overlapping of the spatiotemporal boxes of t1
and t2 after expanding the trip of t2 by 500 meters. Finally, the collect operator (line 8) gathers all
partial results and passes them to the Merge operator (line 7) to generate the final results.

5.7 Query Executor
The Query Executor is a pivotal component of DistMobilityDB, responsible for executing the
query plans generated by the Query Planner. It operates in a distributed environment, where
each worker node executes its local queries concurrently while coordinating with the coordinator
node for overall query execution. The architecture of the Query Executor is designed to optimize
performance through parallel processing and efficient resource management.

The execution process involves several key steps:
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• Decomposition: The Query Executor receives the distributed query plan and transforms it
into sub-queries that can be executed independently on each worker node.
• Local Execution: Each worker node utilizes its local resources to execute the assigned sub-
queries. The executor leverages the available spatiotemporal indexes to enhance performance,
particularly for spatiotemporal queries.
• Aggregation of Results: Once the sub-queries are executed, the results are collected and sent
back to the coordinator node for aggregation. The coordinator node then merges the results
to form the final output, ensuring that any duplicates are removed and that the results are
properly formatted for the user.

In DistMobilityDB, we introduce an adaptive execution framework designed to dynamically
adjust execution plans in response to fluctuating node performance. This framework enhances
efficiency by reassigning queries based on node availability. For example, consider a scenario
where a query is initially directed to node X. If node X is currently overwhelmed or busy, the
framework proactively mitigates delays by rerouting the query. Instead of the query languishing in
the execution queue of node X, the query executor smartly delegates it to an equivalent, replicated
tile (i.e., secondary version) on node Y. This strategy ensures more fluid and responsive query
handling, effectively optimizing resource utilization and reducing wait times in the system.
The execution plans of DistMobilityDB are designed to be adaptive, enabling real-time adjust-

ments based on the current workload and network conditions. This adaptability is crucial for
handling spatiotemporal data, which often exhibits variable density and distribution patterns. The
adaptive mechanism is modeled as: 𝑃adaptive = ℎ(𝑃concurrent,𝑊 , 𝑁 ), where ℎ represents the adaptive
function,𝑊 denotes the current workload, and 𝑁 symbolizes network conditions.

Each execution plan in DistMobilityDB is thus a combination of well-coordinated global and local
plans, underpinned by concurrent and adaptive mechanisms. This holistic approach ensures efficient
processing of spatiotemporal queries across distributed environments, significantly improving the
system’s scalability and responsiveness to complex query demands.
Global Plans: On the coordinator node, global plans (𝑃global) are executed and the node is

responsible for overarching tasks such as data reshuffling (𝑅) and aggregation (𝐴), and indexing
(𝐼 ). It is represented as: 𝑃global = 𝑓 (𝑅,𝐴, 𝐼 ), where 𝑓 is the function that combines reshuffling,
aggregation, and indexing strategies to optimize the overall query execution.
Local Plans: On the worker nodes, local plans (𝑃local) are executed. These plans are tailored

to handle specific data fragments (𝐷𝑠 ) within each node through a specific set of tiles (𝐷𝑡 ). The
local plan for a node is expressed as: 𝑃local = 𝑔(𝐷𝑠 ), where 𝑔 denotes the function that processes
the assigned data fragment.
Concurrent Plans: For complex queries, especially those involving spatiotemporal joins such

as proximity joins, DistMobilityDB adopts a concurrent execution strategy. This involves executing
local joins (𝐽local) on worker nodes simultaneously with global reshuffling (𝑅global) and aggregation
processes on the coordinator node. This concurrent execution is represented as: 𝑃concurrent = 𝐽local ∥
𝑅global , where ∥ signifies the concurrent execution of local and global operations.

5.8 Technical Challenges inQuery Distribution
The query distribution engine in DistMobilityDB faced multiple technical challenges, particularly
in distributing and optimizing spatiotemporal SQL queries across nodes. One of the most complex
aspects was ensuring that query execution plans could be dynamically adjusted based on the
nature of the query whether spatial, temporal, or a combination. Each query comes with two
major challenges: (1) heterogeneous predicates that interact in complex ways and (2) a dynamic
data context that presents data reshuffling for processing the query. Optimizing queries involving
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spatiotemporal joins presented a unique challenge, as it required the system to balance between
using local indexes and minimizing network communication.
While the importance of data reshuffling is clear for some queries, the process itself is fraught

with challenges: (1) high dimensionality requires careful consideration of the relationships between
dimensions to preserve data integrity and efficient load balancing; (2) dynamic data distribution
changes as new data is introduced and queries are processed, necessitating adaptive reshuffling
strategies; and (3) cross-node communication overhead arises from the need to transfer substantial
amounts of data between nodes.

6 POSTGRESQL EXTENSION APIS
The PostgreSQL Extension APIs are mechanisms that allow for extending the capabilities of the
PostgreSQL database system. This section explores the components that constitute our proposed
PostgreSQL extension. A PostgreSQL extension comprises two essential components: a collection
of SQL objects, including metadata tables, functions, and data types, and a shared library which can
be dynamically loaded into a PostgreSQL server during runtime, i.e., calling CREATE EXTENSION
DistMobilityDB. Except for the parser, all database modules within PostgreSQL are designed to
be extensible. The parser, being code-generated during the build process, remains non-extensible,
forcing syntactic interoperability between different extensions. Upon loading a PostgreSQL ex-
tension, it gains the ability to modify PostgreSQL’s behavior by leveraging specific hooks. In the
context of DistMobilityDB, the extension employs the following hooks:

Planner. This hook serves as a intercepts the default query planner, injecting custom query
planning logic into the PostgreSQL database system. Through the utilization of this hook, DistMo-
bilityDB gains the capability to dynamically shape the query planning process, presenting tailored
optimization strategies for managing various spatiotemporal query scenarios within the database.
Following the parsing of a query by PostgreSQL, DistMobilityDB conducts an initial check to
determine if the query involves a DistMobilityDB table. Then, DistMobilityDB proceeds to generate
a plan tree, representing a distributed query plan.

Executor. The hook executor in PostgreSQL is a crucial component that allows DistMobilityDB
to influence the query execution process dynamically. DistMobilityDB utilizes the hook executor
to optimize the execution of distributed queries related to spatiotemporal data, ensuring efficient
execution of the distributed query plan and retrieval of intermediate and final results in a distributed
environment.

User Defined Functions (UDFs). DistMobilityDB leverages PostgreSQL User-Defined Func-
tions (UDFs) to enable the distribution of spatiotemporal data across a distributed environment,
manipulate metadata, and facilitate remote function calls. PostgreSQL UDFs are callable from SQL
queries within transactions. The distribution of data is accomplished by invoking UDFs in SQL
queries, wherein the UDFs orchestrate parallel execution of desired spatiotemporal computations
across the distributed architecture.

Background Workers. PostgreSQL background workers are auxiliary processes designed to
execute tasks independently of the main server process, contributing to system efficiency and
parallelism. In the context of DistMobilityDB, background workers play a vital role in handling
asynchronous and distributed tasks related to spatiotemporal data management. These workers are
leveraged by DistMobilityDB to perform background operations such as data synchronization, node
availability checks, maintenance tasks, and distributed query processing. By utilizing background
workers, DistMobilityDB enhances scalability and responsiveness, ensuring optimal performance
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in scenarios involving extensive spatiotemporal datasets and complex distributed computing tasks
within the PostgreSQL environment.

By leveraging these hooks, DistMobilityDB possesses the ability to intercept interactions be-
tween the client and the PostgreSQL engine, specifically focusing on DistMobilityDB tables. This
interception empowers DistMobilityDB to selectively replace or enhance the default behavior of
PostgreSQL, aligning seamlessly with the distributed functionalities and optimizations uniquely
offered by DistMobilityDB.

7 EXPERIMENTAL EVALUATION
This section presents a comprehensive experimental study evaluating the performance of DistMo-
bilityDB in comparison to other systems, utilizing both real-world and synthetic datasets. For the
real dataset, we experiment using the most used query types in the domain such as range, kNN,
and spatiotemporal joins either colocated or non-colocated using the distance and intersects
predicates. For the synthetic dataset, we run all the BerlinMOD [12] benchmark queries. We conduct
a comparison between DistMobilityDB and other major trajectory data frameworks for which
the source code is available. The comparison is done using the query types supported in each
system. Notice that the spatiotemporal algebra provided by MobilityDB is only partially supported
in other big data frameworks. Therefore, the BerlinMOD benchmark queries will only be used for
the comparison between the MD tiling and the hash partitioning, and not for the other systems as
the queries contain many algebraic operations that are not supported by the other systems.

7.1 Experimental Setting
Two sets of experiments were conducted to evaluate DistMobilityDB. The first experiment was
conducted in Microsoft Azure using up to eight E16s_v3 instances as worker nodes, and one
instance as coordinator. Each instance has 16-vcore processors, 128 GB of RAM, and 8 TB disk. The
instances run CentOS 7 with PostgreSQL 16.1, PostGIS 3.1.4, MobilityDB 1.1, and Citus 12.1. The
Summit framework is installed with Hadoop 2.10.2. The Apache Sedona framework 1.5 is installed
on the nodes with Spark 3.5. The comparison with Apache Sedona is limited to spatial queries as it
supports only spatial data processing.

The second experiment was conducted on an on-premise cluster comprising four nodes. These
nodes were used to compare DistMobilityDB with the recent distributed version of SECONDO [18].
We tried as much as we could to write the queries in Secondo as the implementation of the queries
is very complicated and it needs to call many operations and to use many indexes. We provide
a GitHub link10 for those queries. Each node within the on-premise cluster featured an Intel(R)
Xeon(R) CPU E5520@2.27GHz, 24GB RAM, and 500GB HDD.

7.1.1 Datasets. For the synthetic dataset, we used the MobilityDB implementation11 of the
BerlinMOD [12] data generator. This generator produces realistic trajectories simulating persons’
trips going from home to work in the morning, back to home in the afternoon, and leisure trips in
the evenings and weekends. The data generator is configured with a scale factor parameter that
generates trips for a number of simulated vehicles (e.g., cars, trucks) during a number of days. It is
also a benchmark for moving object databases. It provides two sets of queries: BerlinMOD/R and
BerlinMOD/N. In our experiments, we used the BerlinMOD/R queries, which contain a set of range,
broadcast, colocated, and non-colocated join queries that are the main focus of this paper.

10https://github.com/mbakli/MobilityDb-Secondo-Queries.git
11https://github.com/MobilityDB/MobilityDB-BerlinMOD
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Table 2. The statistics of the experiments datasets

AIS- Real ship tracks BerlinMOD - Synthetic
Input size 1TB ScaleFactor:20 (100GB)
#Trajectories,#instants,#days 486.2K, 5.3Bn, 455 3M, 3.4Bn, 127
Avg instants per trajectory 10.6K 2K

For the real dataset, we used the AIS (Automatic Identification System) ship trajectory dataset
obtained from the Danish Maritime Authority.12 The AIS data includes static data such as ship
name and MMSI (Maritime Mobile Service Identity), and dynamic data such as longitude, latitude,
and time. Each record represents a single spatiotemporal observation. The data is stored in CSV
files, where each file represents the movements of one day, and its size is about 1.7GB. The data is
loaded into a distributed hash-partitioned table to speed up the preprocessing steps. We filtered
out points that are outside the projection and points that have the same time for the same ship
identifier. Then, the table is exported into a single CSV file to be then loaded into Summit and
Apache Sedona. For MobilityDB, we construct multiple trajectories for every ship identifier based
on the time gaps. These trajectories are connected by a sequence attribute for defining their order.
This is done because there is no attribute in the dataset to define the end of each ship trajectory.
Static data is stored once for each trajectory. Trajectories are built passing the spatiotemporal
points ordered by time to the constructor function of the MobilityDB tgeompoint type, which
then returns a spatiotemporal trajectory after doing the interpolation. The statistics about the two
datasets are shown in Table 2.

7.1.2 Data Partitioning. The trajectories for the two datasets in MobilityDB are stored in a
big table called trips, which is partitioned twice in two separate tables using MD tiling and hash
partitioning. Both partitioning methods are configured to generate the same number of partitions
(shards and tiles, respectively). To speed up the spatiotemporal queries, a GiST index is built on the
trip column for each local partition. The same partitioning is used four times while varying the
cluster size: 32 tiles over two worker nodes, 64 tiles over 4 worker nodes, 96 tiles over 6 worker
nodes, and 128 tiles over 8 worker nodes. The number of tiles is taken based on the available cores.
The other lookup relations that are used in the BerlinMOD queries are replicated in all worker
nodes. The ANALYSE command is used for tables to collect statistics about each column so that
the planner can generate an efficient plan.
The trajectories in Summit are partitioned using two-level indexing: first temporal and then

spatial. A day granularity is chosen since the trips in both datasets occurred in a small number of
days, which leverages the fact that Summit filters first by time. For spatial indexing, an RTree is
built for each temporal partition separately. For Apache Sedona, the trajectories are partitioned
spatially using an Rtree index as Sedona only supports spatial data processing. For Secondo, the
trajectories are partitioned using a spatiotemporal grid and the partitions are indexed using the
Rtree index.

7.2 RangeQueries
In this section, we assess the performance of range queries using three experiments, where the
range type can be spatiotemporal (3D), spatial (2D), or temporal (1D). This shows us how the
system behaves when we have one partitioning method for all range types. We built a function that
generates nine random range sizes for every range type, 0.5%, 1%, 2%, 4%, 8%, 10%, 12%, 14%, and
16% of the data extent. Then, we randomly generate 10 ranges for each range size. The comparison
is done using the following: (1) DistMobilityDB using MD-tiling, (2) Hash Partitioning in Citus, (3)
12https://www.dma.dk/SikkerhedTilSoes/Sejladsinformation/AIS/Sider/default.aspx
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the Summit framework using its two-level indexing, and (4) Apache Sedona using the RTree index.
The main query that is used in the experiment is as follows:

Find cargo ships that have passed a specific spatiotemporal range

1 SELECT tripId FROM shipsCargo

2 WHERE intersects(trip, givenRange)

where the given range can be a spatial, temporal, or spatiotemporal range according to the
experiment.

In DistMobilityDB, the distributed query planner triggers the local index to prune trips that do
not overlap with the range. Then the spatial or spatiotemporal range intersection will be verified
with each candidate trip using the predicate Intersects.

(a) Spatiotemporal (b) Spatial

(c) Temporal (d) Spatiotemporal (50GB - OnPrem)

Fig. 9. Range Queries on the AIS Dataset: The x-axis represents the sizes of randomly selected query ranges,
and the y-axis indicates the query runtime in seconds.

Figure 9 shows the performance of the experiments. DistMobilityDB and Citus hash partitioning
perform fastest in all the runs, with DistMobilityDB slightly faster. This is owing to the fact that
hash partitioning creates balanced shards based on the number of trips inside each partition rather
than the number of instants. Whereas, in the AIS dataset, the number of instants per trajectory
varies between a few hundred to tens of thousands, causing the shards to be unbalanced. This
affects the performance when we have a costly operation that needs to be applied for each instant
of each trip.

In Summit, the partitioning is done in two levels: temporal then spatial. Therefore, as expected,
it performs better in temporal and spatiotemporal range queries Figures 9a, 9c. It is much slower in
spatial range queries Figure 9b, because a lot of data is scanned even though most of it is not needed
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for the query. On the spark side, the run time of spatial range queries in Sedona is comparable
to DistMobilityDB and Citus (slightly higher). The spatial RDD is indexed and then the index is
used to perform in-memory range filtering. Figure 9d shows the performance with the distributed
SECONDO. We used a smaller dataset as Secondo replicate trajectories so it consumes more storage.
As shown in the figure, DistMobilityDB performs better since the spatiotemporal intersects function
validates short trajectories and a small number of candidates. This is not the case in Secondo, where
the intersects function is applied to a larger number of candidates and for the entire trajectory
which has thousands of points.

To summarize, the DistMobilityDB gives the best performance due to the following reasons: (1)
the pruning step of the query optimizer that is done on small shards extents before proceeding
with the query predicates, (2) the power of the database index on local shards after the selection
step, and (3) the load balancing between shards w.r.t the small number of instants.

7.3 Selection Optimization Performance
The goal of this experiment is to measure the effectiveness of the selection optimization described
in Section 5.2 of the paper. We compare the performance of DistMobilityDB with and without this
optimization enabled. The experimental queries are the same as Query 1 and Query 3 as described
in Section 7.2 on range queries.
For Query 1, two configurations were tested: (1) Selection Optimization Enabled, where the

selection operator is pushed down below the merge operator, allowing for local execution at the
worker nodes; and (2) Selection Optimization Disabled, where the selection operator is processed
centrally at the coordinator after data collection from the worker nodes. For Query 3, three con-
figurations were tested: (1) Selection Optimization Enabled with Broadcast, where the planner
uses the broadcast operator to share intermediate results across the hash-partitioned table; (2)
Selection Optimization Enabled with Reshuffle, where the planner employs the reshuffle operator
to distribute and colocate intermediate results with the hash-partitioned table; and (3) Selection
Optimization Disabled, where the query is executed directly on the hash-partitioned table without
leveraging fragment-level parallelism or pruning.

(a) Performance of Q1 in Section 5.2 (b) Performance of Q3 in Section 5.2

Fig. 10. Impact of Selection Optimization (SO) on Query Execution Time: The x-axis represents the sizes of
randomly selected query ranges, and the y-axis indicates the query runtime in seconds.

As shown in Figure 10, we evaluated the impact of selection optimization on query performance
using the query execution time, defined as the duration from query submission to the return of
results. In Figure 10a, with selection optimization enabled, query execution times were significantly
reduced compared to the non-optimized configuration. This improvement stems from partially
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executing the selection operation at the worker nodes, which minimizes the volume of data
transferred to the coordinator. In contrast, without optimization, all data must be collected by the
coordinator before applying the selection, resulting in higher data transfer and making performance
more vulnerable to factors such as network bandwidth.
Figure 10b demonstrates that Selection Optimization (SO) Enabled with Reshuffle consistently

achieves the lowest runtime across most window sizes. The reshuffle operator effectively minimizes
data transfer overhead and enhances parallelism, leading to faster query execution, particularly as
the window size increases. The SO Enabled with Broadcast configuration performs slightly slower
than the reshuffle option but still outperforms the disabled configuration. The broadcast operator
distributes intermediate results across the hash-partitioned table, replicating data transferred
volumes, though less efficiently than the reshuffle approach. As window size increases, requiring
more data to be broadcast, the runtime remains relatively stable but slightly higher than the
reshuffle configuration. In contrast, SO Disabled incurs a significantly higher runtime due to the
lack of fragment-level parallelism, which increases the overhead of evaluating the intersects
operation. This kind of topological operation is particularly costly when the input trajectory
contains thousands of points, as is the case in the input dataset. In the optimized configurations,
this overhead is minimized by distributing data fragments across worker nodes.

7.4 kNNQueries
There are numerous forms of kNN (k-Nearest Neighbor) query, we focus on finding the top-k
trajectories that are closest to a given query geometry. This type of query is common in trajectory
pattern analysis and is represented with a triple (geometry, time period, distance in meter). The
geometry can be a point or trajectory. The time period and the distance are thresholds limiting the
search space.

Four experiments are carried out to show the query performance using different test cases. The
first experiment is a point-based kNN, where the input is a given point, time period, and k. A
trajectory-based kNN is the second experiment, in which the input is a given trajectory, time period,
and k. The third and the fourth experiments are similar to the first and the second experiments but
spatial only. To run the experiments, we generate six random points from the extent, each with a
different time period. For the trajectory-based kNN, we retrieve six random trajectories from the
table. We vary the k values as follows: 5, 10, 20, 30, 40, 50, 60, 70, 80, and 90. For each k, we run the
experiment using the six random values five times and take the average of the 30 runs. The query
is as follows:

Find the closest K trips to a given geometry whether it is a trajectory or a point

1 SELECT tripId FROM shipsCargo

2 WHERE trip && givenPeriod

3 ORDER BY trip |=| givenGeom LIMIT K

The query planner of DistMobilityDB prunes trips that do not overlap with the given time period.
Then, it sends the query to the candidate workers to calculate the distances in parallel. The distance
for the top-k candidate trips is then reported from the workers and merged at the coordinator node.
The operator | = | is used to calculate the smallest distance between each candidate trip and the
given geometry.

Figures. 11a and 11b show the performance of the kNN on the point basis with and without time
filter. The local index in MobilityDB plays an important role as the combination of the ORDER BY
and LIMIT clauses trigger the index which helps the planner to retrieve only trajectories that can
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contribute to the query results, resulting in a faster query. Moreover, since the index is used in
both cases and the query reference is just a point, the time filtering predicate has little effect on
performance.

(a) ST-KNN (Point-based) (b) S-KNN (Point-based)

(c) ST-KNN (Trajectory-based) (d) S-KNN (Trajectory-based)

Fig. 11. kNN queries with the AIS dataset: (a) Top k-trajectories to random spatiotemporal points. (b) Same
as (a) but only spatial. (c) Top k-trajectories to random spatiotemporal trajectories. (d) Same as (c) but only
spatial.

In Summit, two factors cause the slower performance: (1) the overhead in starting the YARN job
which executes the kNN algorithm on the candidate partitions, and (2) the spatial index inside each
temporal partition retrieves more data to be scanned. The performance remains mostly unchanged
regardless the value of k, which is expected as the kNN algorithm does not take time if the data is
already partitioned across the mappers. Sedona outperforms Summit in this experiment due to the
in-memory processing. Still, it is slightly slower than the DistMobilityDB and Citus Hash due to
the YARN overhead and the garbage collection.

Figures 11c and 11d illustrate the performance of kNN queries on a trajectory basis, both with and
without a time filter. The observations and explanations echo those discussed earlier for point-based
kNN queries. However, it is crucial to note that calculating the distance between two trajectories is
a computationally expensive operation, incurring additional costs across all systems. Notably, for
large values of k, Summit outperforms Citus Hash in spatial kNN. Despite this, DistMobilityDB
maintains a superior performance due to its MD-tiling strategy, which divides long trajectories
into more manageable sub-trajectories with a reduced number of points. This fragmentation
contributes to the efficiency of spatiotemporal query processing, making DistMobilityDB faster
even in scenarios with large values of k.
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7.5 Self- and Distance JoinQueries
The distance-join query identifies the pairs of trips that move close with respect to a distance
threshold. In this query, the user can join the distributed trips tables and verify the distance between
them using the edwithin predicate. MD-tiling mainly targets to solve this kind of queries, because
it splits the trajectories in a way that preserves the spatiotemporal proximity. The three systems:
Citus Hash partitioning, Summit, and Sedona lack support for spatiotemporal distance joins.

In this experiment, we run a self-join query on the distributed trips table. We vary the distance
from 500 to 4000 meters and vary the cluster size (i.e., the number of worker nodes (n) and the
number of shards(s)). The goal is to show the impact of these changes on the query run-time. In
most cases, the query will require data reshuffling as detailed in Section 5.4. The query is as follows:

Find fishing ships that are closer than or equal to 500 meters

1 SELECT T1.tripId Trip1ID, T2.tripId Trip2ID FROM shipsFishing T1, shipsFishing T2

2 WHERE edwithin(T1.trip, T2.trip, 500)

The experiments conducted demonstrate the impact of the parallel execution of DistMobilityDB
on query performance. As shown in Figure 12a, query response times improve significantly as
the number of worker nodes increases, confirming that the system efficiently distributes query
workloads across nodes. The query run-time increases linearly when the search distance expands
because that results in more reshuffled data, which is normally located near the neighbor boundary.
This extra data does not much affect the query performance as there is a local GIST index for each
shard which only retrieves a few extra candidates to be verified then by the edwithin predicate.
The run-time shown represents the sum of the data reshuffling time and the join query processing
time. Figure 12b indicates that reshuffling data takes roughly 12% of the total time, while the join
query consumes the rest of the time because each shard must be joined to itself and to the data of
its neighbors.

7.6 Intersection JoinQueries
The intersection join query verifies the spatiotemporal intersection between two trajectories in
space and time. We run two experiments using DistMobilityDB. The first is a self-join, finding
the pairs of trips in the same table that intersects, e.g., accident. Thanks to MD-tiling, this is a
colocated join. The planner simply broadcasts the query to all workers. In the second experiment,
a join between two different distributed tables is conducted, where the two tables have different
partitioning schemes. As a result, data reshuffling is always required. The query is given below:

Find ships involved in accidents through their trips

1 SELECT T1.tripId id1, T2.tripId id2 FROM shipsPassenger T1, shipsCargo T2

2 WHERE intersects(T1.trip, T2.trip)

Figure 12c illustrates the runtimes in the two experiments, varying the cluster parameters. It
shows linear scalability when the cluster size increases, which is expected. Figure 12c shows the
performance for the self-join query that was done on all table shards. The performance shown
in Figure 12d represents the intersection between two different tables, i.e., different partitioning
schemes. The query runtime represents the sum of the data reshuffling time and the join query
processing time. The runtime in this second experiment is less than in the self-join experiment
because the two tables are subsets of the AIS dataset: the passenger ship trips joined with the cargo
ship trips. The query processing did not take much time even with the data reshuffling time as the
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(a) Different cluster size (b) JoinQuery + Data Reshuffling

(c) Self-join (d) Different partitioning schemes

Fig. 12. Run-time of distance & intersection joins using MD tiling in the AIS dataset: (a) Varying distance and
cluster size. (b) Percentage between data reshuffling and distance-join query processing. (c) Self intersection-
join. (d) Intersection join on different partitioning schemas.

number of candidate trips in both tables is not too many. Therefore, the intersects predicate verifies
the intersections faster. Although the predicate may take longer in case each trajectory has more
instants.

7.7 BerlinMOD Benchmark
In this section, we evaluate the performance of DistMobilityDB using the BerlinMOD benchmark, a
specialized benchmark designed to test MOD systems with a variety of query types. The evaluation
is conducted across three dimensions. First, we assess the system’s performance and scalability in
different cluster configurations, showcasing its ability to handle increasing workloads with varying
node counts. Second, we perform an evaluation against other state-of-the-art MOD systems, such
as SECONDO, focusing on query performance. Finally, we analyze the impact of using alternative
partitioning strategies on query execution efficiency.

7.7.1 Query Performance Evaluation in Different Cluster Sizes. We split the 17 BerlinMOD queries
into 3 classes: broadcast joins (Q1–Q4, Q7–Q9, Q11–Q15, Q17), spatiotemporal intersection joins
(Q5, Q16), and spatiotemporal distance joins (Q6, Q10). Broadcast joins are the queries that join the
distributed trips relation with one or more replicated lookup relations. They can thus be answered
using both the hash-partitioned and MD-tiled copies of the data. We are interested in evaluating
the difference in query response time using the two partitioning methods while varying the cluster
size and the number of data shards.
Figure 13a shows the runtime of the first batch of the broadcast join queries. We observe that

there is no significant difference due to the partitioning method except that the spatiotemporal
join operations (e.g., contains, intersects) are done faster in the MD tiling as the trajectory
fragments are shorter. Figure 13b shows the runtime of the second batch that is mainly for spatial
joins. We noticed that the MD tiling gives better performance when the number of tiles becomes
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larger. This is because the short trajectories improve the selectivity of local indexes, despite the
fact that the hash partitioned table has the same local indexes, which do not work as expected due
to the long trajectories. In general, hash partitioning with long trajectories does not perform well
in case the query contains expensive operations. Although the number of trajectories per partition
is load-balanced, the partition size varies from one to the other since each trajectory has thousands
of points, which increases the size and hence influences the loading and processing time.

(a) BerlinMOD/R Q (1-3,8-9,11-15) (b) BerlinMOD/R Q (4,7,17)

(c) Colocated join queries (d) Non-colocated join queries

Fig. 13. BerlinMOD/R join queries when varying the cluster size and the number of tiles: (a) Run-time
of all spatiotemporal, temporal, and non spatiotemporal broadcast-join queries. (b) Run-time of all spatial
broadcast-join queries. (c) Spatiotemporal colocated joins using MD tiling. (d) Spatiotemporal non-colocated
joins using MD tiling.

In contrast, intersection and distance joins (i.e., spatiotemporal joins) can only be distributed on
the MD tiled version. We modify Q5 and Q16 in BerlinMOD and add a condition that the vehicles
meet, in order to evaluate this capability in our planner. In their SQL, we add a join predicate
intersects(t1.trip, t2.trip), to check whether the two trips have ever intersected. Because
intersecting pairs will always be in the same tiles, these two queries are considered colocated joins.
Figure 13c shows their response time in a varying number of machines and tiles. For the other
experiment, Q6 and Q10 involve a distance join, e.g, using the edwithin function. Their execution
plans thus include two parts: data reshuffling between neighboring tiles, followed by colocated
joins. Figure 13d illustrates their response times, varying the number of machines and tiles. In
conclusion, these two experiments prove that query processing is highly scalable and can reduce
the execution time by increasing the cluster size and the number of tiles.

7.7.2 Query Performance Evaluation Across MOD Systems. Figure 14 shows the run-time perfor-
mance between Secondo and DistMobilityDB for some of the Berlinmod queries that we managed
to build. The significant difference is in queries 4 and 6. Query 4 runs the intersects predicate and
it takes more time as the trip is fully stored in one shard and it has to be checked many times as
each trip is replicated into all overlapping tiles. The same case for query 6 except that it includes
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a distance predicate, which will require full data reshuffling for all neighbors. As an advantage,
DistMobilityDB reshuffles only the intersection part with neighbors. In conclusion, Secondo users
must independently devise a query management plan for each query. This differs from DistMobili-
tyDB, where users write SQL queries as usual, and the system automatically generates accurate
and optimized distributed execution plans transparently.

Fig. 14. Performance Comparison of BerlinMOD/RQueries with DistMobilityDB and Secondo: The x-axis
represents a selected set of BerlinMOD queries, while the y-axis depicts the query runtime in seconds.

7.7.3 Query Performance Evaluation with Alternative Partitioning Strategies. This experiment eval-
uates the impact of different partitioning methods on query processing. We compare the MD tiling
approach described in Section 4.2 with three state-of-the-art trajectory data partitioning strategies:
DTJb [36], which employs an equi-depth histogram for temporal partitioning; Quadtree [30], which
divides the data into spatial partitions; and Rtree [44], which creates spatiotemporal partitions.
Each partition is treated as part of a multirelation, which is distributed across the cluster nodes. To
ensure consistency across all partitioning strategies, each partition is indexed using the GiST index
provided by MobilityDB. We used the BerlinMOD benchmark with a scale factor of 10, generating
a dataset of 50 GB of trajectories. We selected a set of queries from the benchmark, including two
temporal queries, two spatial queries, and two spatiotemporal queries.

Fig. 15. Performance Comparison of BerlinMOD/R queries using Various Partitioning Strategies: The x-axis
represents a set of BerlinMOD queries categorized as Temporal (T), Spatial (S), and Spatiotemporal (ST)
queries, while the y-axis depicts the query runtime for each partitioning strategy.
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Figure 15 presents the performance evaluation for the execution of six queries. For temporal
queries (Q3 and Q8), DTJb outperforms the other methods due to its temporal partitioning, which
aligns well with the nature of these queries. However, MD Tiling and Rtree also give reasonable
performance, while Quadtree incurs higher execution times because its spatial partitioning results
in more data being scanned. While the local index helps reduce unnecessary data processing,
overlaps between the index and partitioned data can still result in processing irrelevant data.
For spatial queries (Q4 and Q7), Quadtree achieves the best performance. This is attributed to

the query planner, which effectively filters data both globally and locally using the local index,
narrowing down the subset of data that needs to be processed. This is particularly beneficial for
the computationally expensive predicates such as the intersects predicate which is used in these
queries. In contrast, other methods are less efficient because their local indexing retrieves a larger
volume of data, increasing the overhead for executing the intersects predicate. For spatiotemporal
queries (Q11 and Q12), the runtimes are very close across all partitioning methods, as the spatial
and temporal query ranges are relatively small. Overall, in summary, this experiment shows that
the data partitioning algorithm does not significantly affect the query performance. The MD Tiling
algorithm presented in this paper has the benefit of being easy to implement, while similar query
performance close to sophisticated Quadtree and Rtree partitioning methods.

8 CONCLUSIONS AND FUTUREWORK
This paper introduced a design for distributing spatiotemporal data, and query processing in a
moving object database. Multidimensional tiling partitions the spatiotemporal space into disjoint
tiles, and fragments the trajectories accordingly. It thus arranges the data in a way that preserves
the spatiotemporal proximity. The paper then elaborated a concept for SQL query planning and
optimization. The proposed merge operator helped split the problems of query distribution and
query optimization. Considerable effort is still needed to prove the conditions upon which the
merge operator is commutative and/or associative with the other operators of the multi relational
algebra, considering both trajectories and other spatial and spatiotemporal data structures.

REFERENCES
[1] Louai Alarabi. 2019. Summit: A Scalable System for Massive Trajectory Data Management. SIGSPATIAL Special 10, 3

(2019), 2–3.
[2] Louai Alarabi, Mohamed F. Mokbel, and Mashaal Musleh. 2017. ST-Hadoop: A MapReduce Framework for Spatio-

Temporal Data. In Proceedings of the 15th International Symposium on Advances in Spatial and Temporal Databases,
SSTD 2017. Springer, Arlington, VA, USA, 84–104.

[3] Mohamed Bakli, Mahmoud Sakr, and Taysir Hassan A. Soliman. 2019. HadoopTrajectory: a Hadoop spatiotemporal
data processing extension. Journal of Geographical Systems 21, 2 (2019), 211–235.

[4] Mohamed Bakli, Mahmoud Sakr, and Esteban Zimányi. 2019. Distributed Moving Object Data Management in
MobilityDB. In Proceedings of the 8th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data
(BigSpatial ’19). Article 1, 10 pages.

[5] Mohamed Bakli, Mahmoud Sakr, and Esteban Zimányi. 2020. Distributed Mobility Data Management in MobilityDB.
In MDM 2020. 238–239.

[6] Mohamed Bakli, Mahmoud Sakr, and Esteban Zimányi. 2020. Distributed Spatiotemporal Trajectory Query Processing
in SQL. In Proceedings of the 28th International Conference on Advances in Geographic Information Systems (Seattle, WA,
USA) (SIGSPATIAL ’20). Association for Computing Machinery, New York, NY, USA, 87–98.

[7] Mohamed S. Bakli, Mahmoud A. Sakr, and Taysir Hassan A. Soliman. 2018. A spatiotemporal algebra in Hadoop for
moving objects. Geo-spatial Information Science 21, 2 (2018), 102–114.

[8] S. Ceri and G. Pelagatti. 1983. Correctness of Query Execution Strategies in Distributed Databases. ACM Transactions
on Database Systems 8, 4 (1983), pp. 577–607.

[9] Umur Cubukcu, Ozgun Erdogan, Sumedh Pathak, Sudhakar Sannakkayala, and Marco Slot. 2021. Citus: Distributed
PostgreSQL for Data-Intensive Applications. In Proc. of the 2021 International Conference on Management of Data
(SIGMOD ’21). 2490–2502.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2024.



111:38 Mohamed Bakli, Mahmoud Sakr, Esteban Zimányi, Nils Dijk, and Marco Slot

[10] Philippe Cudre-Mauroux, Eugene Wu, and Samuel Madden. 2010. TrajStore: An adaptive storage system for very large
trajectory data sets. In 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010). 109–120.

[11] X. Ding, L. Chen, Y. Gao, C.S. Jensen, and H. Bao. 2018. UlTraMan: A Unified Platform for Big Trajectory Data
Management and Analytics. Proc. of the VLDB Endowment 11, 7 (2018), 787–799.

[12] Christian Düntgen, Thomas Behr, and Ralf Hartmut Güting. 2009. BerlinMOD: a benchmark for moving object
databases. The VLDB Journal 18, 6 (2009), 1335–1368.

[13] Ziquan Fang, Lu Chen, Yunjun Gao, Lu Pan, and Christian S. Jensen. 2021. Dragoon: a hybrid and efficient big trajectory
management system for offline and online analytics. VLDB J. 30, 2 (2021), 287–310.

[14] Chengxu Feng, Bing Fu, Yasong Luo, and Houpu Li. 2022. The Design and Development of a Ship Trajectory Data
Management and Analysis System Based on AIS. Sensors 22, 1 (2022).

[15] Xuefeng Guan, Cheng Bo, Zhenqiang Li, and Yaojin Yu. 2017. ST-hash: An efficient spatiotemporal index for massive
trajectory data in a NoSQL database. In 2017 25th International Conference on Geoinformatics. 1–7.

[16] Ralf Güting, Thomas Behr, and Christian Düntgen. 2010. SECONDO: A Platform for Moving Objects Database Research
and for Publishing and Integrating Research Implementations. IEEE Data Eng. Bull. 33 (06 2010), 56–63.

[17] Ralf Hartmut Güting, Victor Almeida, Dirk Ansorge, Thomas Behr, Zhiming Ding, Thomas Höse, Frank Hoffmann,
Markus Spiekermann, and Ulrich Telle. 2005. SECONDO: An Extensible DBMS Platform for Research Prototyping and
Teaching. In Proc. of the 21st International Conference on Data Engineering, ICDE’05. 1115–1116.

[18] Ralf Hartmut Güting, Thomas Behr, and Jan Kristof Nidzwetzki. 2021. Distributed arrays: an algebra for generic
distributed query processing. Distributed and Parallel Databases 39 (2021), 1009–1064.

[19] International Organization for Standardization. 2023. ISO/IEC 9075:2023 – Information Technology – Database
Language SQL. Available from ISO at https://www.iso.org/standard/76584.html.

[20] R. Li, H. He, R.Wang, S. Ruan, T. He, J. Bao, J. Zhang, L. Hong, and Y. Zheng. 2021. TrajMesa: A Distributed NoSQL-Based
Trajectory Data Management System. IEEE Transactions on Knowledge and Data Engineering (2021).

[21] R. Li, H. He, R. Wang, S. Ruan, Y. Sui, J. Bao, and Y. Zheng. 2020. TrajMesa: A Distributed NoSQL Storage Engine for
Big Trajectory Data. In Proc. of the 36th International Conference on Data Engineering. IEEE, 2002–2005.

[22] Ruiyuan Li, Rubin Wang, Junwen Liu, Zisheng Yu, Huajun He, Tianfu He, Sijie Ruan, Jie Bao, Chao Chen, Fuqiang Gu,
Liang Hong, and Yu Zheng. 2021. Distributed Spatio-Temporal k Nearest Neighbors Join. In Proceedings of the 29th
International Conference on Advances in Geographic Information Systems (SIGSPATIAL ’21). 435–445.

[23] ZhengYu Li and ZhuoFeng Zhao. 2021. MGeohash:Trajectory data index method based on historical data pre-
partitioning. In 2021 7th International Conference on Big Data Computing and Communications (BigCom). 241–246.

[24] Jiamin Lu and Ralf Hartmut Güting. 2013. Parallel SECONDO: Practical and efficient mobility data processing in the
cloud. In Proceedings of the 2013 IEEE International Conference on Big Data. IEEE Computer Society, Santa Clara, CA,
USA, 107–25.

[25] Nehal Magdy, Mahmoud A. Sakr, and Khaled El-Bahnasy. 2017. A generic trajectory similarity operator in moving
object databases. Egyptian Informatics Journal 18, 1 (2017), 29–37.

[26] Jan Kristof Nidzwetzki and Ralf Hartmut Güting. 2017. Distributed SECONDO: an extensible and scalable database
management system. Distributed and Parallel Databases 35, 3–4 (2017), 197–248.

[27] Chunyao Qian, Chao Yi, Chengqi Cheng, Guoliang Pu, Xiaofeng Wei, and Huangchuang Zhang. 2019. GeoSOT-Based
Spatiotemporal Index of Massive Trajectory Data. ISPRS Int. J. Geo Inf. 8 (2019), 284.

[28] Jiwei Qin, Liangli Ma, and Jinghua Niu. 2019. THBase: A Coprocessor-Based Scheme for Big Trajectory Data Manage-
ment. Future Internet 11, 1 (2019), 10.

[29] S. Ray, A. Demke B., N. Koudas, R. Blanco, and A. K. Goel. 2015. Parallel in-memory trajectory-based spatiotemporal
topological join. In 2015 IEEE International Conference on Big Data (Big Data). 361–370.

[30] Suprio Ray, Bogdan Simion, Angela Demke Brown, and Ryan Johnson. 2014. Skew-resistant parallel in-memory spatial
join. In Proceedings of the 26th International Conference on Scientific and Statistical Database Management (SSDBM ’14).
Article 6, 12 pages.

[31] Ibrahim Sabek and Mohamed F. Mokbel. 2017. On Spatial Joins in MapReduce. In Proc. of the 25th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems (SIGSPATIAL ’17). Article 21, 10 pages.

[32] Mahmoud Sakr, Esteban Zimányi, Alejandro Vaisman, and Mohamed Bakli. 2023. User-centered road network traffic
analysis with MobilityDB. Transactions in GIS 27, 2 (2023), 323–346.

[33] Zeyuan Shang, Guoliang Li, and Zhifeng Bao. 2018. DITA: A Distributed In-Memory Trajectory Analytics System. In
Proc. of the 2018 International Conference on Management of Data, SIGMOD ’18 (Houston, TX, USA). ACM, 1681–1684.

[34] Dina Sharafeldeen, Mohamed Bakli, Alsayed Algergawy, and Birgitta König-Ries. 2021. ISTMINER: Interactive
Spatiotemporal Co-occurrence Pattern Extraction: A Biodiversity case study. INFORMATIK 2021. , 565–579 pages.

[35] Renchu Song, Weiwei Sun, Baihua Zheng, and Yu Zheng. 2014. PRESS: A Novel Framework of Trajectory Compression
in Road Networks. Proc. VLDB Endow. 7, 9 (may 2014), 661–672.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2024.

https://www.iso.org/standard/76584.html


Distributed MobilityDB: A Scalable Moving Object Database Management System 111:39

[36] Panogiostis Tampakis, Chirstos Doulkeridis, Nikos Pelekis, and Yannis Theodoridis. 2020. Distributed Subtrajectory
Join on Massive Datasets. ACM Transactions on Spatial Algorithms and Systems 6, 2 (2020), 8:1–8:29.

[37] Haozhou Wang, Kai Zheng, Xiaofang Zhou, and Shazia Sadiq. 2015. SharkDB: An In-Memory Storage System for
Massive Trajectory Data. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’15. 1099–1104.

[38] Sheng Wang, Zhifeng Bao, J. Shane Culpepper, and Gao Cong. 2021. A Survey on Trajectory Data Management,
Analytics, and Learning. ACM Comput. Surv. 54, 2 (2021), 36 pages.

[39] Shuang Wang and Hakan Ferhatosmanoglu. 2020. PPQ-Trajectory: Spatio-Temporal Quantization for Querying in
Large Trajectory Repositories. Proc. VLDB Endow. 14, 2 (oct 2020), 215–227.

[40] Randall T. Whitman, Bryan G. Marsh, Michael B. Park, and Erik G. Hoel. 2019. Distributed Spatial and Spatio-Temporal
Join on Apache Spark. ACM Trans. Spatial Algorithms Syst. 5, 1 (2019), 28 pages.

[41] Dong Xie, Feifei Li, and Jeff M. Phillips. 2017. Distributed Trajectory Similarity Search. Proc. VLDB Endow. 10, 11
(2017), 1478–1489.

[42] Munkh-Erdene Yadamjav, Farhana M. Choudhury, Zhifeng Bao, and Baihua Zheng. 2021. Time Period-Based Top-k
Semantic Trajectory Pattern Query. In Proc. of the 26th International Conference on Database Systems for Advanced
Applications (DASFAA ’21). pp. 439–456.

[43] Zhaojin Yan, Yijia Xiao, Liang Cheng, Rong He, Xiaoguang Ruan, Xiao Zhou, Manchun Li, and Ran Bin. 2020. Exploring
AIS data for intelligent maritime routes extraction. Applied Ocean Research 101 (2020), 102271.

[44] Bin Yang, Qiang Ma, Weining Qian, and Aoying Zhou. 2009. TRUSTER: TRajectory Data Processing on ClUSTERs
(DASFAA ’09). 768–771.

[45] Jia Yu, Zongsi Zhang, and Mohamed Sarwat. 2019. Spatial Data Management in Apache Spark: The GeoSpark
Perspective and Beyond. Geoinformatica 23, 1 (2019), pp. 37–78.

[46] Haitao Yuan and Guoliang Li. 2019. Distributed In-memory Trajectory Similarity Search and Join on Road Network. In
2019 IEEE 35th International Conference on Data Engineering (ICDE). 1262–1273.

[47] Zhongwei Yue, Jingwei Zhang, Huibing Zhang, and Qing Yang. 2018. Time-Based Trajectory Data Partitioning for
Efficient Range Query. In Database Systems for Advanced Applications. 24–35.

[48] Jinrui Zang, Pengpeng Jiao, Sining Liu, Xi Zhang, Guohua Song, and Lei Yu. 2023. Identifying Traffic Congestion
Patterns of Urban Road Network Based on Traffic Performance Index. Sustainability 15, 2 (2023).

[49] Zhigang Zhang, Cheqing Jin, Jiali Mao, Xiaolin Yang, and Aoying Zhou. 2017. TrajSpark: A Scalable and Efficient
In-Memory Management System for Big Trajectory Data. In Proc. of the APWeb-WAIM Joint Conference on Web and Big
Data (Beijing, China). Springer, 11–26.

[50] Esteban Zimányi, Mahmoud Sakr, Arthur Lesuisse, and Mohamed Bakli. 2019. MobilityDB: A Mainstream Moving
Object Database System. Proc. of the 16th International Symposium on Spatial and Temporal Databases, SSTD (2019).

[51] Esteban Zimányi, Mahmoud Attia Sakr, and Arthur Lesuisse. 2020. MobilityDB: A Mobility Database Based on
PostgreSQL and PostGIS. ACM Transactions on Database Systems 45, 4 (2020), pp. 19:1–19:42.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2024.


	Abstract
	1 Introduction
	2 Related Work
	3 Distributed MobilityDB Architecture
	4 Distribution Manager
	4.1 Data Model
	4.2 Multidimensional Tiling

	5 Query Engine
	5.1 The merge Operator
	5.2 Selection Optimization
	5.3 Supported User Queries
	5.4 Planner Strategies
	5.5 Parallel Query Execution
	5.6 Abstract Syntax Tree Transformation
	5.7 Query Executor
	5.8 Technical Challenges in Query Distribution

	6 PostgreSQL Extension APIs
	7 Experimental Evaluation
	7.1 Experimental Setting
	7.2 Range Queries
	7.3 Selection Optimization Performance
	7.4 kNN Queries
	7.5 Self- and Distance Join Queries
	7.6 Intersection Join Queries
	7.7  BerlinMOD Benchmark

	8 Conclusions and Future Work
	References

