Distributed Moving Object Data Management
in MobilityDB

Esteban Zimanyi, Mahmoud Sakr, Arthur Lesuisse and Mohamed Bakli
Universite libre de Bruxelles, Belgium



¢
)
MobilityDB ﬂ%}
e An SQL moving object database (MOD)

e Builds on PostgreSQL and PostGIS

e Developed by a team in Université libre de Bruxelles

e Open source: https://github.com/ULB-CoDE-WIT/MobilityDB

e Compliant with OGC standards on Moving Features, and in particular the
OGC Moving Features Access


https://github.com/ULB-CoDE-WIT/MobilityDB

MobilityDB: Architecture

nt des &
ieures ¥
¥ Brussels
conomics

:
Université Libre,
nxelleso

MobilityDB

PostGIS

PostgreSQL

op-

tgeompoint, tgeogpoint,
tint, tfloat, ttext, tbool

geometry, geography

numeric, monetary, character,
data/time, boolean, enum,
arrays, range,

XML, JSON, ...



MobilityDB:
Features

Third-party tool and
applications

SQL, JDBC, Python ...

Operations

[Iifted spatial] [Iifted relational} [lifted network}

[spatiotemporal] [type casting] [ agtgrrgggtrifnlns ]

I

PostgreSQL extensions

pgAdmin, Franchise, ...

[distance ] [(Spa‘i?gi‘ssmpma'] [ ETL ] [OGCD

[ Query Optimizer |

type Selectivity Join
analyze estimation estimation

L

(spatio)temporal
attribute
[Access Methods |
[[ GIST | (SP-GIST | [ b-tree ]]_,
A A object-relational table

Data Model

ime types Spatiotemporal types:
period « tgeompoint
periodset « tgeogpoint
timestamp « tngeompoint
timestampsset ¢ tngeogpoint
~—— _'_/./
)
( PostgresQL | [ PostGls | -




étﬁ
MobilityDB: Query Examples 332}

e Trips whose speed was ever greater than 90

SELECT TripID
FROM Trips
WHERE speed(Trip) ?> 90

e Trips that ever intersect a point of interest

SELECT TripID, POIDescription
FROM Trips t, POIs p
WHERE tintersects(t.Trip, p.Geom) ?= TRUE

e Temporal count of the number of trips

SELECT tcount(Trip)
FROM Trips



MobilityDB Ecosystem

MobilityDB MobilityDB | MobilityDB | MobilityDB
MapMatch Exchange ETL View
MobilityDB | [MobilityDB | MobilityDB | MobilityDB | MobilityDB
Distributed || Network Stream Python JDBC
Pevco PostgreSQL
Citus PgRouting | PipelineDB &;Spg JDBC
' 42.2.6
- PostgreSQL 11
lityD .
MobilityDB POStGIS 2.5 Python 3.7 Java 11

Ubuntu 18.04.2 LTS




¢
MobilityDB: Coping with Big Data 2B
e Mobility data is typically huge
e MobilityDB builds on PostgreSQL, which is not distributed
e For big data management it is essential to scale out => Distributed MobilityDB
e The solution cannot change the PostgreSQL core



s-gﬁ
Distributed PostgreSQL: Open Source Extensions-

e PostgreXL

o Afork, not an extension of PostgreSQL
o Newest version is based on PostgreSQL-10

e TimescaleDB
o Extension of PostgreSQL, not a fork
o Partition the data horizontally based on the time interval
o Planner functions are modified from the PostgreSQL core planner
o  Optimized for storing and analyzing time series data

e Citus
o Extension of PostgreSQL, not a fork
Acquired by Microsoft (2019)
Horizontally scales PostgreSQL across multiple machines using sharding and replication
Every worker receives a SQL query not an execution plan
Workers have their own planner and different distributed plan executors

O O O O



Distributed MobilityDB: Cluster Architecture

User Query

(_J‘

Preparation e

create_distributed table w istiibuted Flames

create referernce table y S'Ilt'USDB

master add node - F?o;tlgls Router |Real-time | Task Pull

CREATE INDEX PostgreSQL Executor | Executor 'g;:l::jtg r E:(J:zutor
e —

" Worker1 ) " Workerz ) " Workern
Citus Citus Citus
MobilityDB MobilityDB MobilityDB
PostGIS PostGIS PostGIS
PostgreSQL PostgreSQL PostgreSQL
rert] (o] [zl
[17][18] 2]

u v

o



Citus Distributed Query Planner: Query Classes

%’%

e Routable queries: Queries that can be fully evaluated on a subset of
workers, the final result is a simple concatenation of are the workers results

e Query sent to worker nodes, which optimize it using the regular PostgreSQL
planner, executes it, and returns the result to the route executor

Query Workers Coordinator
SELECT * SELECT * SELECT *
FROM Weather FROM Weather_1 FROM Result_1
WHERE City= ‘Brussels’ WHERE City= ‘Brussels’ UNION

SELECT *

FROM Result 1




Citus Distributed Query Planner: Query Classes

Push-downable queries: Queries that span multiple shards and use
aggregates, GROUP BY, ORDER BY, and LIMIT
Executed by the Citus real-time executor

Workers use PostgreSQL planner to optimize the execution of their fragments
and return their result to the executor
Executor merge results, do post processing, and produce the final result

%f%

Query

Workers

Coordinator

SELECT COUNT(Temperature)
FROM Weather
WHERE City= ‘Brussels’

SELECT COUNT(Temperature) cnt
FROM Weather_1
WHERE City= ‘Brussels’

SELECT SUM(cnt)
FROM
(SELECT * FROM Result 1

UNION
SELECT * FROM Result_2

)

1




Citus Distributed Query Planner: Query Classes

%’%

e Recursive CTE queries: can not be pushed down

e Planner is recursively called for the subqueries.

e Coordinator pushes back the result of the subquery to the worker nodes,
these results are used as reference tables in the evaluation of the main query

e Example:
WITH PointCount AS (
SELECT P.PointId, COUNT(DISTINCT T.CarId) AS Hits
FROM Trips T, Points P WHERE tintersects(T.Trip, P.geom)
GROUP BY P.PointId )
SELECT PointId, Hits FROM PointCount AS P
WHERE P.Hits = ( SELECT MAX(Hits) FROM PointCount )



Citus Distributed Query Planner: Query Classes

Sy

Complex queries: Non-co-located joins, which are expensive as they involve
a lot of network 1/O for re-partitioning the data

Citus planner rejects this class of queries by default: To activate it, an option
needs to be set

Queries that involved non-co-located joins always broke in our experiments
One query might be split into multiple parts and different executors might be
invoked for the parts depending on the structure of each query.



Q"Q
Experimental Evaluation ;(>

e Goal: Assess how to distribute queries by integrating MobilityDB and Citus
e Two clusters of 4 and 28 nodes
e Dataset generated by BerlinMOD, a benchmark for MOD

o Simulated trips: to work, from work, leasure
o Size can be controlled by a scale factor
e Workload: 17 BerlinMOD/R range queries of four categories
o Object, Temporal, Spatial, Spatiotemporal
e We experiment with three data partitioning methods:
o Object based (by carld)
o 3D grid partitioning (space partitioning)
o GIiST partitioning (data partitioning, r-tree)



S
BerlinMOD Query in MobilityDB: Example g%

e Q17: Which point(s) from Points have been visited by a maximum number of
different vehicles?

WITH PointCount AS (
SELECT P.PointId, COUNT(DISTINCT T.CarId) AS Visits
FROM Trips T, Points P
WHERE st _intersects(trajectory(T.Trip), P.geom)
GROUP BY P.PointId )

SELECT PointId, Visits

FROM PointCount AS P

WHERE P.Visits = ( SELECT MAX(Visits) FROM PointCount )



@
Distributed Plans in Citus: Example ig%)

e Q17: Which point(s) from Points have been visited by a maximum number of

different vehicles?

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

17

Custom Scan (Citus Router) -
-> Distributed Subplan 54_1
-> GroupAggregate, Group Key: remote_scan.pointid
-> Sort, Sort Key: remote_scan.pointid
-> Custom Scan (Citus Real-Time) -
Task Count: 32
Tasks Shown: One of 32
-> Task
Node: host=pgx1l2 port=5432 dbname=sf21_0
-> HashAggregate, Group Key: p.pointid, t.carid
-> Nested Loop
-> Seq Scan on points_102041 p
-> Bitmap Heap Scan on trips_102008 t
Recheck Cond: (trip && p.geom)
Filter: _intersects(trip, p.geom)
-> Bitmap Index Scan on
trips_spgist_idx_carid_102008
Index Cond: (trip && p.geom)

16



Experimental Results: Overall Gain

80%
0%
40%
20%
0% =
SF1.0 SF5.0 SF9.0 SF19.0
=—g==Sngie Node 100% 100%
=g O bject-Based 7.97% 6.48% 5.01% 3.90%
=g 3D-Grid 6.62% 5.90% 4.06% 3.88%
GBT 6.66% 6.02% 4.09% 3.90%

Run time gain on a cluster of 4 nodes

80%

60%

40%

20%

0% :

SF1.0 SF5.0 SF15.0 SF19.0
-~ Sngie Node 00% 100%
=g~ Object-Based 2.92% 187% 0.91%
=g 3D-Grid 2.57% 1.58% 0.80%
G8T 2.66% 1.62% 0.89% 0.79%

Run time gain on a cluster of 28 nodes

17



Experimental Results: Gain Per Query /

20%

15%

10%

B Object-Based 11%
m 3D-Grid 5%
m GBT 8%

0% I III I [ TT1 —— EEm HER III
Q3 4 Q7 8 Qs

Qll ai2 Qi3 Q14 Qis Q17
10% 3% 5% 1% 0.21% 11% 1.13% 1% 3% 10%
10% 3% 6% 1% 0.21%  10% @ 1.23% 1.26% 3% 10%
10% 3% 6% 1% 0.21%  11% 1.13% 1% 3% 10%

Run time gain per query on a cluster of 4 nodes
18



@
Discussion of Results ig\?@)

g

Experiments done using the BerlinMOD benchmark for moving object
databases

Results show a significant gain in the performance of the distributed queries
wrt single-node queries

No significant differences between the data partitioning methods

3D-grid is slightly better than the other two methods, but with a small margin
13 queries out of 17 could be distributed out of the box

However, BerlinMOD benchmark was not designated to distributed MOD

A specific benchmark is required to assess the performance of different
classes of distributed MOD queries



&&9
Future Work: Roadmap 2

e Enabling non-co-located spatiotemporal joins
e Supporting MobilityDB temporal aggregate functions
e Extending the distributed planner of Citus

20



Thanks for listening !

Questions ?






