
Distributed Moving Object Data Management
in MobilityDB

Esteban Zimányi, Mahmoud Sakr, Arthur Lesuisse and Mohamed Bakli
Université libre de Bruxelles, Belgium

1

MobilityDB
● An SQL moving object database (MOD)

● Builds on PostgreSQL and PostGIS

● Developed by a team in Université libre de Bruxelles

● Open source: https://github.com/ULB-CoDE-WIT/MobilityDB

● Compliant with OGC standards on Moving Features, and in particular the
OGC Moving Features Access

2

https://github.com/ULB-CoDE-WIT/MobilityDB

PostgreSQL

PostGIS

numeric, monetary, character,
data/time, boolean, enum,
arrays, range,
XML, JSON, ...

geometry, geography

MobilityDB
tgeompoint, tgeogpoint,
tint, tfloat, ttext, tbool

MobilityDB: Architecture

3

MobilityDB:
Features

4

MobilityDB: Query Examples
● Trips whose speed was ever greater than 90

SELECT TripID
FROM Trips
WHERE speed(Trip) ?> 90

● Trips that ever intersect a point of interest

SELECT TripID, POIDescription
FROM Trips t, POIs p
WHERE tintersects(t.Trip, p.Geom) ?= TRUE

● Temporal count of the number of trips

SELECT tcount(Trip)
FROM Trips 5

MobilityDB Ecosystem

MobilityDB: Coping with Big Data
● Mobility data is typically huge
● MobilityDB builds on PostgreSQL, which is not distributed
● For big data management it is essential to scale out => Distributed MobilityDB
● The solution cannot change the PostgreSQL core

7

Distributed PostgreSQL: Open Source Extensions
● PostgreXL

○ A fork, not an extension of PostgreSQL
○ Newest version is based on PostgreSQL-10

● TimescaleDB
○ Extension of PostgreSQL, not a fork
○ Partition the data horizontally based on the time interval
○ Planner functions are modified from the PostgreSQL core planner
○ Optimized for storing and analyzing time series data

● Citus
○ Extension of PostgreSQL, not a fork
○ Acquired by Microsoft (2019)
○ Horizontally scales PostgreSQL across multiple machines using sharding and replication
○ Every worker receives a SQL query not an execution plan
○ Workers have their own planner and different distributed plan executors 8

 Distributed MobilityDB: Cluster Architecture

9

Citus Distributed Query Planner: Query Classes
● Routable queries: Queries that can be fully evaluated on a subset of

workers, the final result is a simple concatenation of are the workers results
● Query sent to worker nodes, which optimize it using the regular PostgreSQL

planner, executes it, and returns the result to the route executor

10

 Query Workers Coordinator

 SELECT *

 FROM Weather

 WHERE City= ‘Brussels’

 SELECT *

 FROM Weather_1

 WHERE City= ‘Brussels’

 SELECT *

 FROM Result_1

 UNION
 SELECT *

 FROM Result_1

 ...

Citus Distributed Query Planner: Query Classes
● Push-downable queries: Queries that span multiple shards and use

aggregates, GROUP BY, ORDER BY, and LIMIT
● Executed by the Citus real-time executor
● Workers use PostgreSQL planner to optimize the execution of their fragments

and return their result to the executor
● Executor merge results, do post processing, and produce the final result

11

 Query Workers Coordinator

 SELECT COUNT(Temperature)

 FROM Weather

 WHERE City= ‘Brussels’

 SELECT COUNT(Temperature) cnt

 FROM Weather_1

 WHERE City= ‘Brussels’

 SELECT SUM(cnt)

 FROM

 (SELECT * FROM Result_1

 UNION
 SELECT * FROM Result_2

 ...)

Citus Distributed Query Planner: Query Classes
● Recursive CTE queries: can not be pushed down
● Planner is recursively called for the subqueries.
● Coordinator pushes back the result of the subquery to the worker nodes,

these results are used as reference tables in the evaluation of the main query
● Example:

WITH PointCount AS (

SELECT P.PointId, COUNT(DISTINCT T.CarId) AS Hits

FROM Trips T, Points P WHERE tintersects(T.Trip, P.geom)

GROUP BY P.PointId)

SELECT PointId, Hits FROM PointCount AS P

WHERE P.Hits = (SELECT MAX(Hits) FROM PointCount)

12

Citus Distributed Query Planner: Query Classes
● Complex queries: Non-co-located joins, which are expensive as they involve

a lot of network I/O for re-partitioning the data
● Citus planner rejects this class of queries by default: To activate it, an option

needs to be set
● Queries that involved non-co-located joins always broke in our experiments
● One query might be split into multiple parts and different executors might be

invoked for the parts depending on the structure of each query.

13

Experimental Evaluation
● Goal: Assess how to distribute queries by integrating MobilityDB and Citus
● Two clusters of 4 and 28 nodes
● Dataset generated by BerlinMOD, a benchmark for MOD

○ Simulated trips: to work, from work, leasure
○ Size can be controlled by a scale factor

● Workload: 17 BerlinMOD/R range queries of four categories
○ Object, Temporal, Spatial, Spatiotemporal

● We experiment with three data partitioning methods:
○ Object based (by carId)
○ 3D grid partitioning (space partitioning)
○ GiST partitioning (data partitioning, r-tree)

14

BerlinMOD Query in MobilityDB: Example
● Q17: Which point(s) from Points have been visited by a maximum number of

different vehicles?

WITH PointCount AS (

SELECT P.PointId, COUNT(DISTINCT T.CarId) AS Visits

FROM Trips T, Points P

WHERE st_intersects(trajectory(T.Trip), P.geom)

GROUP BY P.PointId)

SELECT PointId, Visits

FROM PointCount AS P

WHERE P.Visits = (SELECT MAX(Visits) FROM PointCount)

15

Distributed Plans in Citus: Example
● Q17: Which point(s) from Points have been visited by a maximum number of

different vehicles?

16

Experimental Results: Overall Gain

17

Run time gain on a cluster of 4 nodes Run time gain on a cluster of 28 nodes

Experimental Results: Gain Per Query

18
Run time gain per query on a cluster of 4 nodes

Discussion of Results
● Experiments done using the BerlinMOD benchmark for moving object

databases
● Results show a significant gain in the performance of the distributed queries

wrt single-node queries
● No significant differences between the data partitioning methods
● 3D-grid is slightly better than the other two methods, but with a small margin
● 13 queries out of 17 could be distributed out of the box
● However, BerlinMOD benchmark was not designated to distributed MOD
● A specific benchmark is required to assess the performance of different

classes of distributed MOD queries

19

Future Work: Roadmap
● Enabling non-co-located spatiotemporal joins
● Supporting MobilityDB temporal aggregate functions
● Extending the distributed planner of Citus

20

Thanks for listening !
Questions ?

