
Mobility Stream Processing on NebulaStream and MEOS
Mariana M. Garcez Duarte
Université libre de Bruxelles

Brussels, Belgium
mariana.machado.garcez.duarte@ulb.be

Dwi P. A. Nugroho
BIFOLD, TU-Berlin
Berlin, Germany

d.nugroho@tu-berlin.de

Georges Tod
SNCB-NMBS Engineering

Brussels, Belgium
georges.tod@belgiantrain.be

Evert Bevernage
SNCB-NMBS Engineering

Brussels, Belgium
evert.bevernage@belgiantrain.be

Pieter Moelans
SNCB-NMBS Engineering

Brussels, Belgium
pieter.moelans@belgiantrain.be

Emine Tas
SNCB-NMBS Engineering

Brussels, Belgium
emine.tas@belgiantrain.be

Esteban Zimányi
Université libre de Bruxelles

Brussels, Belgium
esteban.zimanyi@ulb.be

Mahmoud Sakr
Université libre de Bruxelles

Brussels, Belgium
mahmoud.sakr@ulb.be

Steffen Zeuch
BIFOLD, TU-Berlin
Berlin, Germany

steffen.zeuch@tu-berlin.de

Volker Markl
BIFOLD, TU-Berlin, DFKI

Berlin, Germany
volker.markl@tu-berlin.de

Abstract
The increasing use of Internet-of-Things (IoT) sensors in moving ob-
jects has resulted in vast amounts of spatiotemporal streaming data.
To analyze this data in situ, real-time spatiotemporal processing
is needed. However, current stream processing systems designed
for IoT environments often lack spatiotemporal processing capa-
bilities, and existing spatiotemporal libraries primarily focus on
analyzing historical data. This gap makes performing real-time
spatiotemporal analytics challenging.

In this demonstration, we present NebulaMEOS, which combines
MEOS (Mobility Engine Open Source), a spatiotemporal processing
library, with NebulaStream, a scalable data management system for
IoT applications. By integrating MEOS into NebulaStream, Nebula-
MEOS utilizes spatiotemporal functionalities to process and ana-
lyze streaming data in real-time. We demonstrate NebulaMEOS by
querying data streamed from edge devices on trains by the Société
Nationale des Chemins de fer Belges (SNCB). Visitors can experi-
ence demonstrations of geofencing and geospatial complex event
processing, visualizing real-time train operations and environmen-
tal impacts.

CCS Concepts
• Information systems→ Location based services; Streamman-
agement.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD-Companion ’25, Berlin, Germany
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1564-8/2025/06
https://doi.org/10.1145/3722212.3725116

Keywords
Spatiotemporal Data, Trajectories, Stream Processing

ACM Reference Format:
Mariana M. Garcez Duarte, Dwi P. A. Nugroho, Georges Tod, Evert Bever-
nage, Pieter Moelans, Emine Tas, Esteban Zimányi, Mahmoud Sakr, Steffen
Zeuch, and VolkerMarkl. 2025.Mobility Stream Processing onNebulaStream
and MEOS. In Companion of the 2025 International Conference on Manage-
ment of Data (SIGMOD-Companion ’25), June 22–27, 2025, Berlin, Germany.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3722212.3725116

1 Introduction
Over the last decade, the use of Internet-of-Things (IoT) enabled
new applications for domains such as public transport manage-
ment [3], urban planning, and maritime traffic management. These
applications are supported by the ability to collect and transmit con-
tinuous spatiotemporal data streams from IoT sensors embedded in
mobile and stationary infrastructure. Nonetheless, while this data
enables real-time decision-making, the challenge lies in processing
it efficiently and effectively in highly distributed IoT environments.
Existing real-time processing solutions with the scalability needed
for dynamic, data-intensive applications often lack spatiotemporal
awareness for processing such spatiotemporal events, leaving a
critical gap in existing IoT systems. Consequently, there is a need
for an IoT data management platform that supports low-latency
spatial analytics [9]. Moreover, addressing the scalability concern
in highly distributed IoT setups requires specialized spatiotemporal
algorithms that run on resource-constrained edge devices.

In this work, we present NebulaMEOS, which combines Nebula-
Stream [8] and MEOS [11, 12]. NebulaStream is an end-to-end data
management system designed for large-scale IoT use cases. Nebula-
Stream processes sensor data from many devices and supports flex-
ible deployment, even on resource-limited edge hardware. MEOS

https://doi.org/10.1145/3722212.3725116
https://doi.org/10.1145/3722212.3725116


SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Mariana M. Garcez Duarte et al.

is an open-source library that manages temporal and spatiotem-
poral data with efficient data structures, such as spatiotemporal
sequences and bounding boxes. Its optimized implementation al-
lows MEOS to run on low-end edge devices, such as a Raspberry Pi,
making it ideal for environments with strict hardware constraints.

NebulaMEOS extends NebulaStream with spatiotemporal pro-
cessing capabilities, addressing the lack of native spatiotemporal
support in many streaming systems. While Kafka [6] and Flink [1]
are popular for large-scale data streaming, they do not natively
manage spatiotemporal analytics [7]. Users must create custom
code or integrate separate frameworks, which can lead to complex-
ity and resource overhead. However, integrating spatiotemporal
operations into existing streaming infrastructures remains chal-
lenging, primarily due to the need for domain-specific extensions.
In contrast, NebulaStream offers a more unified and lightweight
plug-in mechanism [4] suitable for seamless and reliable integration.
Real-time spatiotemporal processing must be both low-latency and
workload-adaptive, adjusting to data volume and rate oscillations
to maintain consistent throughput in dynamic IoT environments.

NebulaMEOS provides real-time spatiotemporal imputation and
analytics in IoT environments, addressing distributed data manage-
ment challenges and a lack of native spatiotemporal capabilities
in existing stream processing frameworks. We demonstrate this
integration with a practical example using data from the Société
Nationale des Chemins de fer Belges (SNCB), Belgium’s national
railway operator. SNCB installed sensors and edge devices aboard
six trains to monitor vehicle metrics. Currently, these devices send
raw data to the cloud without onboard real-time processing. Nebula-
MEOS enables local, real-time analytics, even when connectivity
and hardware resources are limited. This demo delivers the follow-
ing contributions:

(1) Real-Time Spatiotemporal Processing: The demo shows
that NebulaMEOS can perform real-time spatiotemporal an-
alytics on distributed IoT networks.

(2) Scalable and Extensible Integration: The demo denotes
the extensibility of NebulaStream through the incorporation
of MEOS operations.

(3) Showcase of Practical Use Cases: We demonstrate ge-
ofencing and geospatial complex event processing (GCEP)
queries. These applications are relevant for railway opera-
tors, such as SNCB, which faces related challenges in manag-
ing train operations. For example, geofencing can improve
safety by ensuring speed limits to maintenance zones, and
GCEP enables proactive monitoring of train battery levels.

2 System Overview
Our demonstration integrates NebulaStream and MEOS (Mobil-
ity Engine Open Source) to manage and process spatiotemporal
data in highly dynamic and distributed Internet-of-Things (IoT)
environments. By leveraging the strengths of both systems, Nebula-
MEOS provides a scalable framework for data handling and query
execution in scenarios involving mobility data.

Figure 1 shows the architecture of NebulaMEOS. The train has
a variety of sensors that provide readings such as brake pressure,
speed, temperature, battery status, and geographic location, which

Figure 1: System Overview

are processed by the system to monitor and optimize train opera-
tions. These sensors send their data to a centralized processor edge
device with an Intel Atom Dual-Core onboard the train. This edge
device, which incorporates the proposed system, processes the in-
coming sensor data and transmits the processed data to a server for
visualization using Deck.gl.1 The query processing workflow uses
NebulaStream’s distributed capabilities. It employs its coordinators
and worker nodes to manage computations and allows execution
directly on edge devices.

2.1 NebulaStream
NebulaStream [8] is an end-to-end data management platform de-
signed for IoT scenarios. The system requires fewer resources for a
similar workload compared to large-scale stream processors such
as Kafka [6] and Flink [1], making it suitable for onboard devices
with limited CPU or memory [9]. By processing data at the edge,
it reduces the reliance on strong or constant network connections.
This approach lowers latency since events do not need to be sent
to a cloud for processing. NebulaStream adapts to changing work-
loads [2], such as trains that may encounter areas of poor connec-
tivity or abrupt changes in sensor outputs.

In addition, NebulaStream’s execution engine offers a flexible
plugin interface that enables the extension of different function-
alities, allowing the integration of third-party libraries to support
running complex queries for rich analysis [4].

2.2 MEOS
MEOS2 (Mobility Engine Open Source) [11, 12] is a C library de-
signed to manage both temporal and spatiotemporal data, focus-
ing on mobility data. It incorporates data structures, such as spa-
tiotemporal sequences and bounding boxes, based on the concepts
of moving objects across temporal and spatial dimensions. Tradi-
tional solutions often separate location from time, complicating
the tracking of moving objects. MEOS addresses this by storing
and querying spatiotemporal data in a single framework, allowing
tasks such as identifying a train’s route through specific zones at
precise time intervals. In addition, MEOS can be deployed within
an edge computing environment, i.e., close to the data sources, such
as a Raspberry Pi, and on cloud infrastructure, ensuring scalable
1https://deck.gl
2https://libmeos.org/

https://deck.gl
https://libmeos.org/


Mobility Stream Processing on NebulaStream and MEOS SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany

Figure 2: SNCB Data Visualization

data management. The library detaches storage from processing,
enabling higher flexibility and efficiency when handling data.

2.3 NebulaMEOS
NebulaStream implements a plugin-based architecture that facili-
tates the integration of external components to extend its core func-
tionality. In addition, the system features an expression framework,
which allows the development of custom operators and functions
through inheritance and composition. The framework also supports
runtime operator definition through dynamic registration, enabling
the integration of domain-specific operator logic, including calling
MEOS functions.

NebulaMEOS adds custom operators, including MeosAtStbox
_Expression, which incorporate spatial predicates such as edwith
in and tpoint_at_stbox. The function edwithin checks if a ge-
ometry and a temporal point ever fall within a specified distance
of each other, and the function tpoint_at_stbox returns a tem-
poral point restricted to a spatiotemporal box. These predicates
evaluate relationships in streaming data, allowing for spatiotempo-
ral queries. These operators can, for example, filter event streams
based on proximity constraints. MEOS extends the expressions
processing framework to support tumbling, sliding, and threshold
windows over spatiotemporal data streams. To this end, we ex-
tend the window definition expressions and operands. This feature
enables the grouping and analysis of spatiotemporal data. Further-
more, we address the scalability demands in highly distributed IoT
environments that require specialized spatiotemporal algorithms
that can function on resource-constrained edge hardware. This
entails developing lightweight data structures and operators capa-
ble of handling continuous data streams under strict latency and
memory constraints.

3 Demonstration
We use a laptop with MacOS and a Raspberry Pi with Ubuntu to
deploy NebulaMEOS for our demonstration.3 We simulate the con-
tinuous event stream from a dataset originating from edge devices
installed on six trains, with information such as GPS coordinates,
battery voltage levels, and brake pressure readings over six months.
This dataset offers information about the trains’ operational and
geographical position (Figure 2)

We define two categories of queries, Geofencing and Geospa-
tial Complex Event Processing, to demonstrate how NebulaMEOS
works to enable spatiotemporal queries in IoT environments. In
addition, we report the ingestion rate and throughput per query.
3The demo video is at https://youtu.be/lQS11qhy7J0

3.1 Geofencing
A geofence is a boundary that limits a location. It can be created
dynamically in a radius from the center of the area or by setting
the boundaries to perimeters, such as the edges of a neighborhood.
Geofencing supports analysis by establishing and supervising the
pertinent geographical borders within the operation area. Our inte-
gration enables four use cases in geofencing. First, we implement
location-based alert filtering. When the trains enter maintenance
zones, the system will respond by discarding non-essential alerts
such as speeding. Second, we perform location-based monitoring to
track noise levels within specific regions and minimize the train’s
impact on neighborhoods. Third, the system suggests train speed
based on GPS data, ensuring safe navigation through high-risk ar-
eas such as sharp curves or construction sites. Fourth, combining
weather measurements will suggest safety measures in adverse
conditions such as heavy snow and fog.

Query 1: Location-Based Alert Filtering. The system determines
whether a train is within a maintenance area. Alerts such as speed
violations or equipment malfunctions are filtered out if confirmed.

Query 2: Location-Based Noise Monitoring. The query monitors the
sound levels outside the train. The system can relate some of these
noise peaks to their geographical areas by bringing in a geospatial
context. This spatial analysis allows for appropriate noise reduction
in areas such as managing the engine output performance.

Query 3: Dynamic Speed Limit. By utilizing real-time GPS data,
the system can enforce speed restrictions dynamically, adapting to
specific zones, such as curves and other high-risk areas.

Query 4: Weather-Based Speed Zones. We integrate weather data
from OpenMeteo4 to suggest speed limits for zones with conditions
such as heavy rain, snow, or fog, maintaining safety operations.

In Queries 1 to 4, we have achieved a throughput of 2.24 MB
with 20K events per second (e/s).

3.2 Geospatial Complex Event Processing
Geospatial Complex Event Processing (GCEP) is a paradigm that
enables detecting and analyzing patterns and relationships within
spatiotemporal data streams. In the context of NebulaMEOS, GCEP
facilitates the real-time processing of data generated by trains, en-
abling proactive decision-making. The GCEP is extended from the
work presented in [10]. The system offers an alternative to existing
GCEP systems, such as [5], by integrating real-time spatiotempo-
ral analytics and pushing down computation to IoT devices. Our
integration enables four use cases in GCEP. First, NebulaMEOS
monitors temperature and battery usage when on battery power,
keeping track of nearby workshops. Second, our system enables
the detection of a heavy load of passengers and suggests adjusting
temperature and lighting. Third, the NebulaMEOS system detects
unscheduled stops outside stations and workshops. Fourth, the
system monitors brake usage and brake pressures.

Query 5: BatteryMonitoring. We ensure the battery’s charge and dis-
charge cycles follow a predefined curve. Deviations might indicate
that the battery’s health is decreasing. The system generates alerts

4https://open-meteo.com/

https://youtu.be/lQS11qhy7J0
https://open-meteo.com/


SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Mariana M. Garcez Duarte et al.

(a) Alert Filtering (b) Noise Monitoring

(c) Speed Monitoring (d) Weather-Based Speed Zones

(e) Battery Monitoring (f) Heavy Load Monitoring

(g) Unscheduled Stops (h) Brake Monitoring

Figure 3: Queries’ Visualizations

for overheating and excessive discharge. In addition, it queries
nearby workshops in case of emergencies. We have obtained a
throughput of 0.61 MB with 8K e/s.

Query 6: Heavy Passenger Load. We estimate the number of passen-
gers to determine whether there are no free seats to verify whether
the number of trains put into service is sufficient for the number of
passengers, such that an extra train can be added in the following
days if that is not the case. We have obtained a throughput of 3.68
MB with 32K e/s.

Query 7: Unscheduled Stops. The stop is flagged as unscheduled if
the train stops outside designated zones. This alert helps operators
act, whether they need to send help or investigate mechanical prob-
lems. It also prevents unauthorized halts that could affect service
reliability. We have a throughput of 0.40 MB with 10K e/s.

Query 8: Monitoring Brakes. The system detects patterns such as
repeated emergency brakes in specific track segments or persistent
low-pressure readings that could indicate a decrease in the brake’s
effectiveness. We achieved a throughput of 2.24 MB with 20K e/s.

3.3 Visualizations and User Interaction
The demonstration includes visualizations that allow users to assess
the challenges of train operations and the analysis that can be per-
formed with the NebulaMEOS system (Figure 3). The visualization
was built in Deck.gl and uses Kafka to input data.

We show real data collected from trains, including coordinate
positions, speeds, and brake pressure. Users can select a query
and a train to see details about the route. Each query uses colors
and labels that spotlight trends and help operators detect potential
issues. The queries react with alerts and flags as the stream flows,
producing a visual alert when the query condition is satisfied.

4 Conclusion
In this demonstration, we introduce NebulaMEOS, which combines
MEOS, a spatiotemporal processing library, with NebulaStream, a
scalable data management system designed for IoT applications.
NebulaMEOS allows spatiotemporal functionalities that enable real-
time processing and analysis of streaming data. To validate our
approach, we conducted queries on data collected from edge devices
installed on trains operated by SNCB.

For future work, we plan to enhance the spatiotemporal stream
processing capabilities within NebulaMEOS by defining additional
operations from MEOS. These will include the development of
trajectory-based functions in addition to the point-based functions
described in this demonstration. We also aim to define aggregation
functions that can work with elements within the stream to answer
queries such as identifying the top-k nearest trains. We will also
deploy the system directly on the edge devices within the trains.

Acknowledgments
This work was partially funded by the EU’s Horizon Europe re-
search program grant No. 101070279 MobiSpaces.

References
[1] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas. 2015.

Apache Flink: Stream and Batch Processing in a Single Engine. The Bulletin of
the Technical Committee on Data Engineering 38, 4 (2015).

[2] Ankit Chaudhary, Kaustubh Beedkar, Jeyhun Karimov, Felix Lang, Steffen Zeuch,
and Volker Markl. 2025. Incremental Stream Query Placement in Massively
Distributed and Volatile Infrastructures. In 41st IEEE International Conference on
Data Engineering, ICDE 2025, Hong Kong SAR, China, May 19-23, 2025. IEEE.

[3] H. Gavriilidis, A. Michalke, L. Mons, S. Zeuch, and V. Markl. 2020. Scaling a
Public Transport Monitoring System to Internet of Things Infrastructures. In
Proc. of the 23rd Int. Conf. on Extending Database Technology (EDBT).

[4] P. Grulich, A. Lepping, D. Nugroho, V. Pandey, B. Monte, S. Zeuch, and V. Markl.
2024. Query Compilation Without Regrets. Proc. ACM Manag. Data 2, 3 (2024),
165.

[5] B. Khazael, M. Asl, and H. Malazi. 2023. Geospatial Complex Event Processing in
Smart City Applications. Simulation Modelling Practice and Theory 122 (2023),
102675.

[6] J. Kreps. 2011. Kafka: A Distributed Messaging System for Log Processing.
[7] S. Shaikh, K. Mariam, H. Kitagawa, and K. Kim. 2020. GeoFlink: A Distributed

and Scalable Framework for the Real-Time Processing of Spatial Streams. In Proc.
of the 29th Int. Conf. on Information and Knowledge Management (CIKM). ACM,
3149–3156.

[8] S. Zeuch, A. Chaudhary, B. Monte, H. Gavriilidis, D. Giouroukis, P. Grulich,
S. Bress, J. Traub, and V. Markl. 2020. The NebulaStream Platform: Data and
Application Management for the Internet of Things. In Proc. of the Conference on
Innovative Data Systems Research (CIDR).

[9] S. Zeuch, E. Zacharatou, S. Zhang, X. Chatziliadis, A. Chaudhary, B. Monte, D.
Giouroukis, P. Grulich, A. Ziehn, and V. Mark. 2020. NebulaStream: Complex
Analytics Beyond the Cloud. Open J. Internet Things 6 (2020), 66–81.

[10] A. Ziehn. 2020. Complex Event Processing for the Internet of Things. In VLDB
2020 PhD Workshop.

[11] E. Zimányi, M. Duarte, and V. Diví. 2024. MEOS: An Open Source Library for
Mobility Data Management. In Proc. of the 27th Int. Conf. on Extending Database
Technology (EDBT).

[12] E. Zimányi, M. Sakr, and A. Lesuisse. 2020. MobilityDB: A Mobility Database
Based on PostgreSQL and PostGIS. ACM Trans. Database Syst. 45, 4 (2020).


	Abstract
	1 Introduction
	2 System Overview
	2.1 NebulaStream
	2.2 MEOS
	2.3 NebulaMEOS

	3 Demonstration
	3.1 Geofencing
	3.2 Geospatial Complex Event Processing
	3.3 Visualizations and User Interaction

	4 Conclusion
	References

