A0 MEQOS

I\/IobllltyDB
Enabling Moving Features in
Multiple Computing Environments

Esteban Zimanyi
Universite libre de Bruxelles, Belgium

125" OGC Member Meeting, Moving Features Standards Working Group
Frascati, Italy, February 2023

SQL
Optimization

Indexes

Operations

https://mobilitydb.com/

PostgreSQL MObIlItyD B

Scalar statistics & Grid-based Spatial grid + period
selectivity estimation statistics bound histograms

B-tree., haSh, GlST, GlST, SP-GlST,
SP-GIST, GIN, BRIN gr GiST, SP-GIST

Comparison, topological, CRS, trajectory, temporal
transformation, properties, overlay, properties, lifted

casting, ...etc ...etc. predicates, aggregations
e

numeric, character, Geometry tgeompoint,
date/time, geograph),/ tgeogpoint, tint,
bool, xml, json tfloat, ttext, tbool

’.d'&
5 ULB Solbosch
i
& Q U Building MJ

N— _/

Moving Features in Stream and Edge Processing

|

®
4

s
/.

®
4

2021-
50|

10-11T09:21:04.981.
850340,4.351710

s

4

®

s

,lg’)«t 2

—

Positions

https://mobispaces.eu/

Apache Kafka Buffer

HTTP server

Visualization

JSON (

(¢ =

Data _
accumulation

MEQS

Zo

Processin

Batch
insert

)

Stream Processing

Database Server

r :
=) MobnSpaces

Moving Features in the Cloud

" Citus Cluster _conto—— Control_ ——Control

Y ... e v —— .
X B @.@ 506

S
Client] : '
<—‘—Read/Wnte—’ P i
@ : MobilityDB i i MobilityDB 5 ; { ; MobilityDB
< | . Vol LW ?'.‘.‘f?f’.‘f‘_’_’_k_‘?_’_”_'____
Client {

.@@@@@

Node Deployment Stateful Deamon Persistent Persxstent Service

https://github.com/MobilityDB/MobilityDB-Azure

Visualizing Moving Features in QGIS

QGIS

Temporal onNewFrame() Processing
Controller Algorithm

copy features

PYMEOS @I

Vector Layer

https://github.com/MobilityDB/MobilityDB-QGIS

Visualizing Moving Features in Deck.gl

Copen'hagen

2:43:35 PM

https://github.com/MobilityDB/MobilityDB-Deck

MobilityDB Ecosystem

\ 4

€49 kepler.gl

MobilityDB Cloud

&

(® mapbox 3 @/s §g kafka ‘III
Openlayers React movingpandas
A
acis| B | @ <@
Grdfdnd CltUqutq kubernetes OpenTripPlanner Javascript PSycopg
.’. y 2422 l==El
N @ il @ s | e
MapServer | GeoServer plotly docker Java python’
i

gaafiiqo

PostgreSQL

ubuntu macos

O MEOS

2 Search

Project
Licence
Documentation
Data Model
Normalization
Data Structures
Aggregate Operations
Developer's Documentation
Moving Features Formats
Well-Known Text (WKT)
Well-Known Binary (WKB)

Moving-Features JSON (MF-
JSON)

Tutorial Programs
My First MEOS Program
Read from File
Assemble Trips
Store in MobilityDB
Disassemble Trips
Clip Trips to Geometries
Tile Trips

"z MEOS

MEOS

MEOS (Mobility Engine, Open Source) is a C library and its associated API for manipulating temporal and spatiotemporal data. It is
the core component of MobilityDB, an open source geospatial trajectory data management & analysis platform built on top of
PostgreSQL and PostGIS.

MEOS extends the ISO 19141:2008 standard (Geographic information — Schema for moving features) for representing the change of
non-spatial attributes of features. It also takes into account the fact that when collecting mobility data it is necessary to represent
“temporal gaps”, that is, when for some period of time no observations were collected due, for instance, to signal loss.

MEOS is heavily inspired by a similar library called GEOS (Geometry Engine, Open Source) — hence the name. A first version of the
MEOS library written in C++ has been proposed by Krishna Chaitanya Bommakanti. However, due to the fact that MEOS codebase is
actually a subset of MobilityDB codebase, which is written in C and in SQL, the current version of the library allows us to evolve both
programming environments simultaneously.

MEOS aims to be the base library on which other projects can be built. For example, the following projects are built on top of MEOS:

» PYMEOS is a Python binding to MEOS using CFFI
» MobilityDB is a PostgreSQL extension that enables storing and manipulating the temporal types provided by MEOS.

Other projects can built on top of MEOS, for example, Java or C# drivers for MEOS or implementing MEOS on other DBMSs such as
MySQL.

https://libmeos.org

Q_ search...

Project
Support
Code of Conduct
Project Steering Committee
Development
Cl Status
Requests for Comment
Testing
Usage
Download and Build
Install Packages
API Docs
C API Programming
C++ API Programming
Tools
Bindings
FAQ
Geometry Formats
GeoJSON
Well-Known Binary (WKB)
Well-Known Text (WKT)
News

\/orcinn 210 0

"z GEOS P Edit this page

GEOS

GEOS is a C/C++ library for computational geometry with a focus on algorithms used in geographic information systems (GIS)
software. It implements the OGC Simple Features geometry model and provides all the spatial functions in that standard as well as
many others. GEOS is a core dependency of PostGIS, QGIS, GDAL, and Shapely.

If you need support using the GEOS library or would like to get involved in the community check out the Support page.
Capabilities
Spatial Model and Functions

« Geometry Model: Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon, GeometryCollection

» Predicates: Intersects, Touches, Disjoint, Crosses, Within, Contains, Overlaps, Equals, Covers

« Operations: Union, Distance, Intersection, Symmetric Difference, Convex Hull, Envelope, Buffer, Simplify, Polygon Assembly,
Valid, Area, Length,

» Prepared geometry (using internal spatial indexes)

» Spatial Indexes: STR (Sort-Tile-Recursive) packed R-tree spatial index

e Input/Output: OGC Well Known Text (WKT) and Well Known Binary (WKB) readers and writers.

API Features

https://libgeos.org

MobilityDB, MEOS, PyMEQOS, and Friends

e MEOS enables a single code base for manipulating moving features in
multiple programming environments and languages
e Thin wrappers for several programming languages

—_—

]
<
m
O
n

[

6.4.1 Input/Output Functions

¢ Get the Well-Known Text (WKT) representation EB @
asText ({tpoint,tpoint[],geo[]}) — {text,text[]}

SELECT asText (tgeompoint 'SRID=4326; [Point (0 0 0)Q@2001-01-01, Point(l 1 1)R2001-01-02)"');
—— [POINT Z (0 0 0)E2001-01-01, POINT Z (1 1 1)€2001-01-02)

SELECT asText (ARRAY[geometry 'Point (0 0)', 'Point(l 1)']);

—— {"POINT (O O)", "POINT(1 1)"}

* Get the Extended Well-Known Text (EWKT) representation @ @
asEWKT ({tpoint,tpoint[],geo[]}) — {text,text[]}

SELECT asEWKT (tgeompoint 'SRID=4326; [Point (0 0 0)@2001-01-01, Point (1 1 1)@2001-01-02)"');
—— SRID=4326; [POINT Z (0 0 0)@2001-01-01, POINT Z (1 1 1)R2001-01-02)

SELECT asEWKT (ARRAY [geometry 'SRID=5676;Point (0 0)', 'SRID=5676;Point (1l 1)']);

-— {"SRID=5676;POINT (0 O)", "SRID=5676;POINT(1 1)"}

* Get the Moving Features JSON representation OB
asMFJSON (tpoint, options=0, flags=0,maxdecdigits=15) — bytea
The options argument can be used to add BBOX and/or CRS in MFJSON output:

— 0: means no option (default value)

- 1: MFJSON BBOX

— 2: MFJSON Short CRS (e.g., EPSG:4326)

— 4: MFJSON Long CRS (e.g., urn:ogc:def:crs:EPSG::4326)

https://docs.mobilitydb.com/MobilityDB/develop/

Connection between MobilityDB and MEOS

MobilityDB SQL definition MobilityDB C definition
CREATE FUNCTION asText(tgeompoint) PGDLLEXPORT Datum
RETURNS text Tpoint_as_text(PG_FUNCTION_ARGS)
AS 'MODULE_PATHNAME', 'Tpoint_as_text' {
LANGUAGE C IMMUTABLE STRICT PARALLEL SAFE; Temporal *temp = PG_GETARG_TEMPORAL_P(®);
CREATE FUNCTION asText(tgeogpoint) int dbl_dig_for_wkt = OUT_DEFAULT_DECIMAL_DIGITS;

if (PG_NARGS() > 1 && ! PG_ARGISNULL(1))
dbl_dig_for_wkt = PG_GETARG_INT32(1);
char *str =|tpoint_as_text(temp, dbl_dig_for_wkt);

text *result = cstring2text(str);
prrea(str); MEQOS

PG_FREE_IF_COPY(temp, ©);
PG_RETURN_TEXT_P(result);

RETURNS text
AS "MODULE_PATHNAME', 'Tpoint_as_text'
LANGUAGE C IMMUTABLE STRICT PARALLEL SAFE;

MobilityDB

https://github.com/MobilityDB/MobilityDB/wiki/Building-MobilityDB-and-MEOS

Connection between PyMEOS and MEOS

PyMEOS Classes

class TPoint(Temporall[shp.Point, TG, TI, TS, TSS], ABC):

Abstract base class for both Geographic and Geometric types of any temporal subtype.

def as_wkt(self, precision: int = 15):
""uReturn the string representation of the content of = self"""
return tpoint_as_text(self._inner, precision)

def as_ewkt(self, precision: int = 15):
return tpoint_as_ewkt(self._inner, precision)

PYyMEQS

PYMEOS CFFI Interface

def tpoint_as_text(temp: 'const Temporal *', maxdd: int) — str:
temp_converted = _ffi.cast('const Temporal %', temp)
result =|_1lib.tpoint_as_text(temp_converted, maxdd)
result = _ffi.string(result).decode('utf-8")

return result if result == _ffi.NULL else None M E 0 S

https://github.com/MobilityDB/PyMEQOS/wiki/PyMEOS-Architecture

MEQOS API

Modules Functions
Functions for PostgreSQL types Temporal * tbool_in (const char *str)
Functions for PostgreSQL types. Return a temporal boolean from its Well-Known Text (WKT) representation. More...
Functions for PostGIS types char * tbool_out (const Temporal *temp)
Functions for PostGIS types. Return a temporal boolean from its Well-Known Text (WKT) representation. More...
Functions for set and span types char * temporal_as_hexwkb (const Temporal *temp, uint8_t variant, size_t *size_out)
Functions for set and span types. Return the WKB representation of a temporal value in hex-encoded ASCII. More...
Functions for box types char* temporal_as_mfjson (const Temporal *temp, bool with_bbox, int flags, int precision, char *srs)
Functions for box types. Return the MF-JSON representation of a temporal value. More...
Functions for temporal types uint8_t * temporal_as_wkb (const Temporal *temp, uint8_t variant, size_t *size_out)

e Return the WKB representation of a temporal value. More...

Temporal * temporal_from_hexwkb (const char *hexwkb)
Return a temporal value from its HexEWKB representation. More...

Temporal * temporal_from_mfjson (const char *mfjson)
Return a temporal point from its MF-JSON representation. More...

https://docs.mobilitydb.com/libmeos/html/modules.html

Temporal Model: Data Structures

LT
Temporal -

size
temptype
subtype
interpolation

total/exclusive

Tinstant

value
t

TSequence |

bbox
count
instants

TSequenceSe{"

bbox
count
totalcount
sequences

f

https://libmeos.org/documentation/datastructures/

P T P M e a. T
Set Span - SpanSet -
size spantype size
settype basetype spansettype
basetype lower _inc spantype
flags upper_inc basetype
count lower count
bboxsize upper span
(bbox) elems
values \ <f
TBox STBox
period period
span Xmin
flags xmax
ymin
ymax
zmin
zmax
srid

flags

MobilityDB and OGC'’s Moving Features SWG

e MobilityDB aims at being 100% conformant with OGC’s MF standards
e MF-JSON support for many years
Extended for all temporal types: tbool, tint, tfloat, ttext
e OGC’s Simple Feature Access WKT and WKB extended for all temporal types
e \WAKB is essential in distributed environments such as the cloud:
Processes need an efficient way to exchange information
e MF-API support is being done in the European project EMERALDS
e Essential component for enabling Mobility as a Service (MaaS)
e MobilityDB provides an open-source testbench for designing and implementing
MF-SWG standards

<& EMERALDS

https://emeralds-horizon.eu/

MobilityDB and OGC'’s Moving Features API

The API of MobilityDB is peer reviewed and published in two TODS
publications:

MobilityDB: A mobility database based on PostgreSQL and PostGIS
E Zimanyi, M Sakr, A Lesuisse
ACM Transactions on Database Systems (TODS) 45(4), pp 19:1--19:42, 2020

A foundation for representing and querying moving objects
RH Guting, MH Bohlen, M Erwig, CS Jensen, NA Lorentzos, M Schneider, M Vazirgiannis
ACM Transactions on Database Systems (TODS) 25 (1), 1-42, 2000

Scientific basis for defining the MF-API

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=jN9XqkQAAAAJ&citation_for_view=jN9XqkQAAAAJ:edDO8Oi4QzsC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=dy4wF5oAAAAJ&citation_for_view=dy4wF5oAAAAJ:u-x6o8ySG0sC

OGC Moving Features API

Rationale: split the development of the standard into three incremental phases

e P1: Retrieval of features and their attributes
o Corresponding to operations in MF-Access and their temporal counterparts
o Accessor functions, restriction functions (atX, minusX), from/to MF-JSON, speed, azimuth, ...
e P2: Topological operations/predicates between pairs of features, where at least

one is a moving feature
o Lifted topological relationships, simple topological relationships, from/to WKT, WKB
o Example: “intersection” between a geometry object (e.g., an administrative boundary) and a
trajectory of a moving feature (e.g., a car, a person, a vessel, an aircraft, a hurricane).
e P3: Advanced aggregation and analytical operations

o Temporal aggregates (tcentroid, tmax, tsum, ...), static aggregates (twAvg), simplify, ...
o Example: movement patterns between soccer players for defining proper tactics

MobilityDB

An open source geospatial trajectory data management & analysis platform.

Many thanks for your attention !

Location tracking devices, such as GPS, are nowadays widely used in smartphones, and in vehicles. As
aresult, geospatial trajectory data are currently being collected and used in many application
domains. MobilityDB provides the necessary database support for storing and querying such
geospatial trajectory data

MobilityDB

MobilityDB is implemented as an extension to PostgreSQL and PostGIS. It implements persistent
database types, and query operations for managing geospatial trajectories and their time-varying
properties.

OPEN CHAT

PyMEOS API

PyMEOS Period shift(delta: timedelta)— Period

Returns a new period that is the result of shifting se1¢ by deita

class pymeos.time.period.Period(string: str | None = None, *, lower: str | datetime | None = None, upper: str
| datetime | None = None, lower_inc: bool = True, upper_inc: bool = False, _inner=None) Examples

Bases: object >>> Period(’[2000-01-01, 2000-01-10]").shift(timedelta(days=2))
>>> "Period([2000-01-03 00:00:00+01, 2000-01-12 00:00:00+01])"

B PyMEOS package
B Time Class for representing sets of contiguous timestamps between a lower and an upper bound. The
bounds may be inclusive or not.

[Time
Parameters: delta - datetime.timedelta instance to shift

8 Period period Objects can be created with a single argument of type string as in MobilityDB.
Returns: Anew period instance

period

B PeriodSet >>> Period((2019-09-08 00:00:00+01, 2019-09-10 00:00:00+01) ')

& Peri .
MEOS Functions:

[TimestampSet

Temporal Another possibility is to provide the 1ower and upper named parameters (of type str or period_shift_tscale
datetime), and optionally indicate whether the bounds are inclusive or exclusive (by default, the
Main I . e i
lower bound is inclusive and the upper is exclusive): tscale(duration: timedelta)—> Period
Boxes
Agsregators >>> Period(lower='2019-09-08 00:00:00+01°, upper='2019-09-10 00:00:00+01") Returns a new period that starts as se1¢ but has duration duration
>>> Period(lower="2019-09-08 00:00:00+01", upper='2019-09-10 00:00:00+01', lower_inc=False, upper_in
>>> Period(lower=parse(’2019-09-08 00:00:00+01'), upper=parse(’2019-09-10 00:00:00+01'), upper_inc=T Examples
Plotters P!
DB 4 »
>>> Period('[2000-01-01, 2000-01-10]").tscale(timedelta(days=2))
Initialization >>> 'Period([2000-01-01 00:00:00+01, 2000-01-03 00:00:00+01])"

static from_hexwkb(hexwkb: str)— Period

Returns a Period from its WKB representation in hex-encoded ASCII. :param hexwkb: WKB
representation in hex-encoded ASCI|

Parameters: duration - datetime.timedelta instance representing the duration of the
new period
Returns: Anew period instance Returns: Anew period instance
MEOS Functions: MEOS Functions:

span_from_hexwkb period_shift_tscale

