MOVE: Interactive Visual Exploration of Moving Objects

Maxime Schoemans’, Mahmoud Sakr’? and Esteban Zimanyi’

"Université Libre de Bruxelles, Brussels, Belgium

2Ain Shams University, Cairo, Egypt

Abstract

Visualization is a powerful tool in understanding moving object data. There is, however, a lack of common open-source
tools that can support users in this task. The main challenges are to provide rich transformations and visualizations through
an interactive interface, to help users in exploring, understanding and presenting their moving object data. In this demo,
we present MOVE (Moving Objects Visual Exploration), an open-source tool that integrates MobilityDB, a moving object
database in PostgreSQL, and QGIS to visualize moving objects. MOVE is capable of querying and displaying moving object
data through a simple interface and visualizing both static and animated spatial data in QGIS. We use Danish AIS data to
demonstrate the capabilities of MOVE by presenting a set of example queries and visualizations.

Keywords

Spatio-Temporal Data, Moving Objects, Visualization, Open-source

1. Introduction

Mobility is omnipresent in our everyday life, and un-
derstanding it is becoming increasingly important for
numerous practical and financial reasons. Mobility data
is best understood using visualizations, which explains
the interest for common open-source tools that can han-
dle such data and create rich visualizations of it. In this
demo, we present MOVE, a PostgreSQL- and QGIS-based
visualization tool to interactively visualize and explore
moving objects data.

The stack of PostgreSQL, PostGIS, and QGIS' is popu-
lar for spatial data visualization and exploration. With
this work, we aim at empowering this community with
a tool for mobility data visualization. This new tool uses
MobilityDB? as a solution to mobility data management.
MobilityDB is a temporal extension to PostGIS that can
handle large mobility data sets (continuous moving object
trajectories) and offers a wide range of transformation
and aggregations operations in SQL.

The work presented in this demo thus contributes to
proposing a new tool to visualize and explore Mobili-
tyDB data in QGIS. This is done through a QGIS plugin
providing a simple and interactive interface for the user.
The MOVE plugin is available as open-source” and works
with the latest versions of MobilityDB and QGIS.

As related work, perhaps the most comprehensive
work in the visualization of mobility data is the foun-

Published in the Workshop Proceedings of the EDBT/ICDT 2022 Joint

Conference (March 29-April 1, 2022), Edinburgh, UK

&) maxime.schoemans@ulb.be (M. Schoemans);

mahmoud.sakr@ulb.be (M. Sakr); esteban.zimanyi@ulb.be

(E. Zimanyi)

Commons Letne Ao 10 ertina (CC BV 20—

[== CEUR Workshop Proceedings (CEUR-WS.org)
lwww.qgis.org
2www.github.com/MobilityDB/MobilityDB
Swww.github.com/mschoema/move

dation in [1]. This work provides concepts and applica-
tion examples of exploratory analysis of movement data.
There is, however, a lack of open-source visualization
systems that allow such exploratory analysis through an
interactive and powerful interface. Niche system imple-
mentations include V-Analytics [2] and GTX [3]. The
common open-source visualization tools, mainly geospa-
tial, have little support for movement data. Users would
need to integrate a complex stack of tools to obtain both
rich and scalable visualizations, as assessed in [4].

In QGIS, one could use the Time-Manager plugin [5]
to create animated visualization of moving objects. It
provides a user-friendly GUI for visualizing timestamped
geometries (i.e., discrete point-based trajectories). Re-
cently, it was integrated as a built-in QGIS feature, called
Temporal Controller. Using client-side code, the Tem-
poral Controller can also be used to create smoothly
animated visualizations of continuous trajectories. This
is, however, both complex and inefficient. Complex, be-
cause it requires users to write client-side code in QGIS
for doing interpolation. In addition, for the integration
with MobilityDB, the spatiotemporal types are not un-
derstood by QGIS, and the users thus have to transform
and handle these types manually. Inefficient, because this
solution only scales to 10’s of concurrent moving objects
on screen. Our work leverages the capabilities of the ex-
isting Temporal Controller while hiding this complexity
from the end-user and improving the scalability.

The rest of the paper is structured as follows. Section 2
presents the architecture of the MOVE plugin used to con-
nect QGIS to MobilityDB. Secondly, Section 3 presents
multiple visualization examples that can be created us-
ing simple queries through the MOVE interface. Lastly,
Section 4 concludes this paper.

mailto:maxime.schoemans@ulb.be
mailto:mahmoud.sakr@ulb.be
mailto:esteban.zimanyi@ulb.be
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
www.qgis.org
www.github.com/MobilityDB/MobilityDB

2% Tem o
Ao (X e: 202009-26 12:02:35 to 2020.09-29 1202:36

I R S e — Loop

Streetap
Range| 2020.09-29 00:0002 |2 to 20200929 23:59:58 |2 & ~ step 1.000 “seconds - 8

B ETT—
A seLect sl
D / FROM AIS]
NN ‘
N\
P

Browser | Layers N _» T

Figure 1: QGIS User Interface

2. The MOVE Plugin

The architecture of the visualization tool is composed
of three parts: MobilityDB, QGIS, and the MOVE plugin
linking these two systems.

MobilityDB [6] is an open-source moving object
database built on top of PostgreSQL and PostGIS. It adds
new temporal types to PostgreSQL that can represent
moving points (tgeompoint) and moving rigid geome-
tries (tgeometry), as well as temporal floats, integers,
booleans and texts. The temporal types tgeompoint
and tgeometry use the PostGIS Point and Polygon
types respectively to represent the individual instants of
the moving objects.

QGIS is a geospatial visualization tool. It can connect
to multiple spatial data stores, including PostGIS, and
display static geometry objects, such as points, linestrings
and polygons. Using the Temporal Controller, it has the
capability of displaying animated maps. As such, QGIS
has the capability of displaying both static and animated
representations of moving object data.

MOVE allows users to write SQL spatio-temporal
queries and to visualize the results in QGIS. These queries
are executed by MobilityDB, and the user has thus access
to the complete set of operations offered by PostgreSQL,
PostGIS and MobilityDB. These include for instance pro-
jection, distance, speed, azimuth, temporal aggregations,
and temporal topological predicates [6]. With this rich
API, users can be creative in expressing both exploratory
as well as analytical queries and visualize their results.
On the QGIS side, users are additionally offered a big
variety of map display and symbology options.

The MOVE plugin, displayed in Figure 1, presents a
simple but powerful interface to the user. When execut-
ing a SELECT query, the plugin inspects the types of the
resulting columns and creates the appropriate layers in
QGIS to visualize them. Columns storing PostGIS ge-
ometry types are displayed as they would have been by
default. If the query returns MobilityDB spatiotempo-
ral types, that is, tgeompoint or tgeometry, MOVE
creates temporary database tables to approximate these
spatiotemporal objects into a representation that uses
native QGIS types, such as LinestringM. These tables

are then added as layers in QGIS, marked as temporal,
and can be animated using the QGIS built-in temporal
controller. Additionally, indexes are built on the temporal
and spatial columns of these tables. This allows users
to scale up their database, without compromising the
responsiveness of the display in QGIS.

It is worth mentioning that MOVE chooses by design
that all the layers it creates for visualization use native
QGIS representations. As such, the user has access to the
whole range of styling, annotation, etc. that is available
in QGIS to enrich the visualization as needed. The sym-
bology of the created layers is always set to default and
can be modified by the user. Each layer also contains all
the non-geometry columns returned by the initial query,
and can thus also be used by the user as usual. Specifi-
cally, columns with scalar temporal properties are also
handled by the plugin and can be displayed with the use
of the DataPlotly* plugin. These columns are displayed
as 2D line plots, with the time displayed on the x-axis
and the scalar values on the y-axis.

3. Examples of Possible
Visualizations

The following subsections present examples of possible
visualizations, along with the queries that we used to
generate them. These queries and visualizations use a
real dataset of AIS ship trajectories, that is published by
the Danish Maritime Authority’. The data covers one day,
September 29, 2020. The file size is 1.9GB and contains
8M AIS points of 1,788 different ships.

Data is loaded into MobilityDB in the
ble AIS(mmsi integer, trip tgeometry,
centroid tgeompoint). The mmsi attribute is a
unique ship identifier. The trip is a temporal geometry,
i.e., moving region, representing the ship movement.
It represents the shape, orientation and movement of
the ship. The centroid attribute represents the ship
as a temporal point (tgeompoint\verb) in the case
where the shape and orientation information is of no
interest to the user query. It has been computed using
the operation trajectory(trip). Since this operation
is used in multiple queries of the following subsections,
we precompute the result of this operation in column
centroid to simplify the queries. Next, we illustrate
examples of possible visualizations on the AIS dataset.

ta-

3.1. Animated Points and Geometries

Queries 1 and 2 can be used to display columns of tem-
poral geometries and points, respectively. Running these

*www.github.com/ghtmtt/DataPlotly
Swww.dma.dk/SikkerhedTilSoes/Sejladsinformation/AIS/
Sider/default.aspx

www.github.com/ghtmtt/DataPlotly
www.dma.dk/SikkerhedTilSoes/Sejladsinformation/AIS/Sider/default.aspx
www.dma.dk/SikkerhedTilSoes/Sejladsinformation/AIS/Sider/default.aspx

Query 1 (4s for 100 ships, 40s for 1000 ships):
SELECT mmsi, trip FROM AIS;

roller a®
me: 2020-09-29 15:27:39 t0 2020-09-29 15:27:40

> Loop.

Range| 20200929 00:00:02 2Jto 2020.09:30 0000158 2/ @ - step 1000 lseconds - 8

/

» v/ tgeom
» v/ @ Background Maps

Browser | Layers

-
&

Figure 1: Visualization of temporal geometries

Query 2 (4s for 100 ships, 45s for 1000 ships):
SELECT mmsi, centroid FROM AIS;

‘Temporal Controller -
O] ®|Frame: 2020-09-29 15:27:39 t0 20200929 15:27:40

FIRNDrIC] Loop

Range|2020.05-29 000002 to 20200930 000058 22~ step 1000 Zseconds -8

» ¥ 1 Background Maps °

Browser Layers

Figure 2: Visualization of temporal points

Query 3 (4s):
SELECT mmsi,
Query 4 (8s):
SELECT mmsi,

trajectory(centroid) FROM AIS;

trajectory(atPeriodSet (

centroid, getTime(atvalue(
speed(centroid) #< 30, True))
)) as trip FROM AIS;

(@) (b)

Figure 3: Ship trajectories, before and after cleaning

queries in the plugin interface will automatically add
a layer in QGIS with the temporal property activated.
This displays the ships as animated polygons and points
respectively, and it is possible to interact with the anima-
tion using QGIS Temporal Controller.

Figures 1 and 2 display a snapshot of the layers result-
ing from Queries 1 and 2, respectively. Notice that the
added layer is already marked as temporal, as indicated
with the clock symbol on the right of the layer names.
Using the Temporal Controller visible at the top of the
image, this data can be explored and animated.

3.2. Interactive Data Cleaning

When working with mobility data, errors can occur at
multiple stages of the pipeline, and the data received
by the database is thus not free of errors. Visualizing
this data is essential to not only determine the nature of
the errors but also verify that the cleaning process was
successful. With the use of the plugin, this cleaning and
verification process can be done interactively.

After loading the data in table AIS, we can display the
trajectories of the ships using Query 3. Figure 3a displays
the result of running this query in the plugin interface. In
this figure, we can see long straight lines passing through
solid terrain, which are errors in the data. These lines are
present because some data points are not placed on the
actual trajectory of the ship, but rather on an incorrect
location far from the actual position of the ship.

A possible way to remove these errors is to compute
the speed of the ship, and remove the segments of the
trajectory having a speed higher than a certain thresh-
old, such as 30 m/s. This can be done through the use of
multiple MobilityDB functions on temporal points as dis-
played in Query 4. Figure 3b shows the result of Query 4,
and the erroneous lines visible in Figure 3a have indeed
been removed. If this were not the case, a new query
could have been run to continue this interactive cleaning
process.

3.3. Heat Map of Trajectories

Query 5 constructs a heat map using a second table Grid,
storing the geometries of a regular square grid enclosing
the vessel trajectories. Using the QGIS layer styling, we
can then color the grid cells with a high weight. This
creates the visualization shown in Figure 4.

The lines shown in Figure 4 display grid cells that were
traversed by multiple ships on the same day, which could
indicate navigation routes or zones with high traffic.

3.4. Traversed Area

MobilityDB offers a wide range of operations to process
temporal points and geometries, such as distance, inter-
section or restriction functions. An example of a complex
operation on temporal geometries is traversedArea.
This function computes the area traversed by a temporal
geometry as a PostGIS polygon and can be used, for ex-
ample, to compute the closest point of approach of a ship
to a fixed point on land. Query 6 computes the traversed
area of a ship, and the result of this query is displayed in
Figure 6.

3.5. Temporal Attributes

DataPlotly is a powerful plugin allowing QGIS to display
attributes of a table using the Python Plotly API. This

Datalotly L)

Query 5 (> 1min): SELECT cell, count(*) as weight o i a
FROM Grid, AIS WHERE intersects(centroid, cell) i
GROUP BY cell;

Temporal Count

count

o

Vengbysse
Ty,

L < 2 A\ \

I I\

Figure 7: Temporal count of ships at the port of Skage

Randers PN

/ Danmark

iyt Query 8 (> 1min):
SELECT a.mmsi AS mmsil, b.mmsi AS mmsi2,
trajectory(atPeriodset(a.trip, getTime(
atvalue(tdwithin(a.trip, b.trip, 100),
True)))) AS trajl,
trajectory(atPeriodset(b.trip, getTime(
atvalue(tdwithin(a.trip, b.trip, 100),
X True)))) AS traj2,
Y Wi alih getTimestamp (NearestApproachInstant (
Figure 4: Heat map of the ship trajectories a.trip, b.trip)) as t,
nearestApproachDistance(a.trip, b.trip) AS dist
FROM AIS AS a, AIS AS b WHERE a.mmsi < b.mmsi

T

N S

SELECT mmsi, trajectory(centroid) FROM AIS;

Figure 8: Close encounter of two shi

Figure 5: Density of ship trajectories

Query 6 (2s):
SELECT mmsi, trip, traversedArea(trip)
FROM AIS WHERE mmsi = 538090508;

Figure 9: Flow map between several ports

tool allows the creation of different plot types, such as
scatter plots, histograms, bar plots and more.
Visualizing temporal attributes, such as temporal
floats, integers or Booleans can also be of interest. Our
plugin thus allows DataPlotly to display these attributes
Figure 6: Traversed area of a ship arriving at the docks 45 Jines in a scatterplot, where the = and y-axes cor-

Query 7 (5s): SELECT port, geom respond to the time and value dimensions respectively.

tcount (atvalue(Figure 7 displays. th.e result of Query 7, which counts

tintersects(centroid, geom), True)), the number of ships in the port of Skagen as a temporal

FROM Ports, AIS integer. The figure shows the extent of the port on the
WHERE port = ’Skagen’

AND intersects(centroid, geom)
GROUP BY port, geom;

map and the count of the ships as a stepwise function in
a scatter plot.

3.6. Close Encounter

As the last example, the MobilityDB tdwithin operation
can be used to find out when two temporal points are
within a given distance of each other. Query 8 uses this
operation to restrict the trajectories of ships to the times
when they are within 100 meters of each other. This
can for example be used to display close encounters of
two ships at sea. Figure 8 shows a zoom of one close
encounter returned by Query 8.

3.7. More Visualizations

The described examples only form a subset of the visual-
izations possible using the plugin. More complex queries
can be also executed to create more advanced visualiza-
tions, such as the flow map displayed in Figure 9. This
can be achieved by combining both the wide range of
operations in MobilityDB as well as the wide range of
styling features in QGIS. Indeed, since the plugin adds
QGIS layers to visualize the results of the queries, the
users are then free to adapt the symbology of the data as
they see fit. For example, Figure 1 displays every ship in
a random color, and Figure 5 corresponds to Figure 3b
with different styling, giving a better impression of the
density of the trajectories.

4. Conclusion

This paper presented MOVE, a visualization tool that
integrates with MobilityDB and QGIS. MOVE presents
a simple interface to interactively query and visualize
spatial and spatiotemporal data. Using the extensive
MobilityDB API and the large number of visualization
options available in QGIS, the users can easily build rich
visualizations. Especially, MOVE creates transformations
of the MobilityDB temporal types to be able to build
static and animated visualizations of moving objects in
QGIS. MOVE delegates the data processing to Mobili-
tyDB, which can handle large data sets and offers a wide
range of transformation and aggregation operations in
SQL. This solution builds on the open-source stack of
PostgreSQL, PostGIS, MobilityDB and QGIS, and is thus
available and ready-to-use for its large community of
users and developers.

References

[1] G. Andrienko, N. Andrienko, P. Bak, D. A. Keim,
S. Wrobel, Visual Analytics of Movement, Springer,
2013.

[2] N. Andrienko, G. Andrienko, V-analytics (a.k.a.
commongis), 2010. URL: http://geoanalytics.net/
V-Analytics/.

[3] H.-P.-I. Computer Graphics Systems, Gtx - geo tem-
poral explorer, 2021. URL: https://www.gtx-vis.org/.

[4] A. Graser, M. Dragaschnig, Open geospatial tools
for movement data exploration, KN-Journal of Car-
tography and Geographic Information 70 (2020) 1-8.

[5] A. Graser, Visualisierung raum-zeitlicher daten in
geoinformationssystemen am beispiel von quantum
gis mit “time-manager”-plug-in, in: Proceedings of
FOSSGIS2011, 2011, pp. 73-75.

[6] E. Zimanyi, M. Sakr, A. Lesuisse, MobilityDB: A
Mobility Database based on PostgreSQL and PostGIS,
ACM Transactions on Database Systems 45 (2020)
42.

http://geoanalytics.net/V-Analytics/
http://geoanalytics.net/V-Analytics/
https://www.gtx-vis.org/

	1 Introduction
	2 The MOVE Plugin
	3 Examples of Possible Visualizations
	3.1 Animated Points and Geometries
	3.2 Interactive Data Cleaning
	3.3 Heat Map of Trajectories
	3.4 Traversed Area
	3.5 Temporal Attributes
	3.6 Close Encounter
	3.7 More Visualizations

	4 Conclusion

