

Managing Mobility Data in PostgreSQL

Third International Workshop in Big Mobility Data Analytics BMDA 2020

Contact: Esteban Zimányi (ezimanyi@ulb.ac.be) Mahmoud SAKR (mahmoud.sakr@ulb.ac.be)

MobilityDB

- A moving object database MOD
- Builds on PostgreSQL and PostGIS
- Developed by a team in Université libre de Bruxelles
- Open source extension
- Compliant with OGC standards on Moving Features, and in particular the OGC Moving Features Access

Mobility Data: PostGIS

...

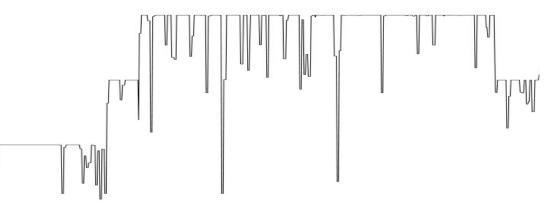
id	geom	t
	1 POINT(15.839728 55.8367	783) 2018-04-01 19:34:49+00
	1 POINT(15.831427 55.8340	3) 2018-04-01 19:36:19+00
	1 POINT(15.823145 55.8313	307) 2018-04-01 19:37:49+00
	1 POINT(15.820398 55.8303	398) 2018-04-01 19:38:19+00
	1 POINT(15.817642 55.8294	167) 2018-04-01 19:38:49+00
	1 POINT(15.816722 55.8291	.65) 2018-04-01 19:38:59+00
	1 POINT(15.814793 55.8285	
	1 POINT(15.80575 55.82548	
	1 POINT(15.798323 55.8230	
	1 POINT(15.797487 55.8227	
	1 POINT(15.792805 55.8211	,
	1 POINT(15.791978 55.8209	
	1 POINT(15.786472 55.8190	· · · · · · · · · · · · · · · · · · ·
	1 POINT(15.784457 55.8184	
9 7	1 POINT(15.779068 55.8166	
-	1 POINT(15.776327 55.8156	
	1 POINT(15.775412 55.8153	
	1 POINT(15.774503 55.8150	
	1 POINT(15.772762 55.8144	
	1 POINT(15.770842 55.8138	
	1 POINT(15.76726 55.81265	
	1 POINT(15.764525 55.8117	742) 2018-04-01 19:48:29+00

Mobility Data: Trajectories

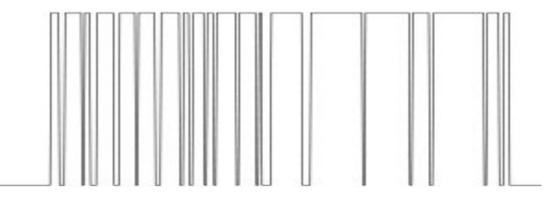
 id
 trip

 1
 [POINT(15.839728 55.836783)@2018-04-01 19:34:49+00, POINT(15.831427 55.83403)@2018

 12
 [POINT(8.067513 57.851652)@2018-04-01 07:35:06+00, POINT(8.073813 57.848518)@2018


 55
 [POINT(12.446722 54.689387)@2018-04-01 00:00:00+00, POINT(12.447155 54.689822)@201

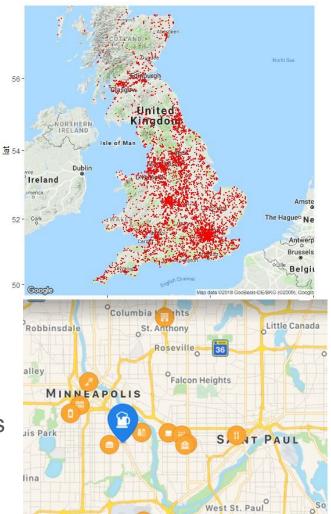
 4
 [POINT(9.752845 55.544552)@2018-04-01 08:34:16+00, POINT(9.75391 55.545305)@2018-04-01


 8
 [POINT(10.141707 55.152783)@2018-04-01 07:11:16+00, POINT(10.141707 55.152783)@201

Mobility Data: Temporal Types

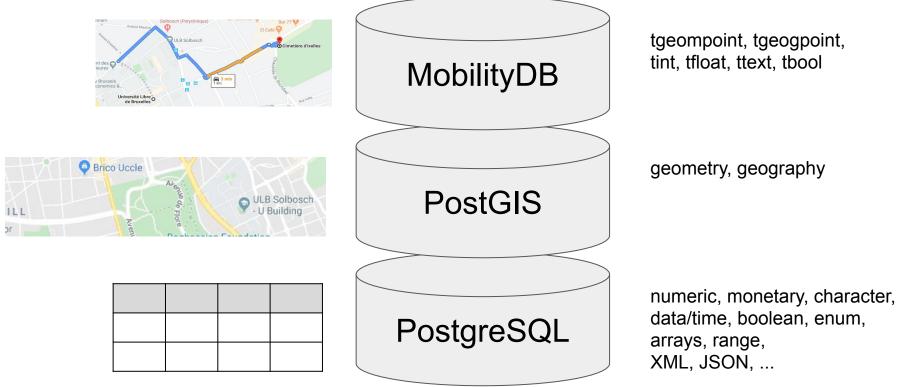
tfloat: speed(Trip)

tbool: speed(Trip) > 90



Mobility Data: Points

tgeompoint(inst): UK road accidents 2012-14


https://www.kaggle.com/daveianhickey/2000-16-traffic-flow-england-scotland-wales

tgeompoint(instants): social network check-ins

https://support.foursquare.com/

MobilityDB: Architecture


Data Management: Application vs. DBMS Support

```
WITH TripSegs AS (
    SELECT TripId, Point AS P1, T AS T1,
    LAG (Point) OVER W AS P2,
    LAG (T) OVER W AS T2
    FROM TripPoints WINDOW W AS (
        PARTITION BY TripId ORDER BY T)
)
SELECT DISTINCT(TripId)
FROM TripSegs
WHERE ST_Distance(Point2, Point1) /
    (T2 - T1) > 90
```

SELECT TripId FROM Trips t WHERE speed(trip) @> 90

Using MobilityDB

Speed calculation using PostGIS

MobilityDB Ecosystem

MobilityDB MapMatch		MobilityDB Exchange		MobilityDB View		MobilityDB ETL	
MobilityDB Distributed	MobilityDB Network		MobilityDB Stream	QCIS	python- mobilitydb		MobilityDB JDBC
© cītusdata	pgRouting		PIPELINEDB	psycopg	asyncpg		PostgreSQL JDBC
docker	Ð	MobilityDB	PostgreSQL	PestGIS	python"		Java
ubuntu							

Loading Data: CSV Example

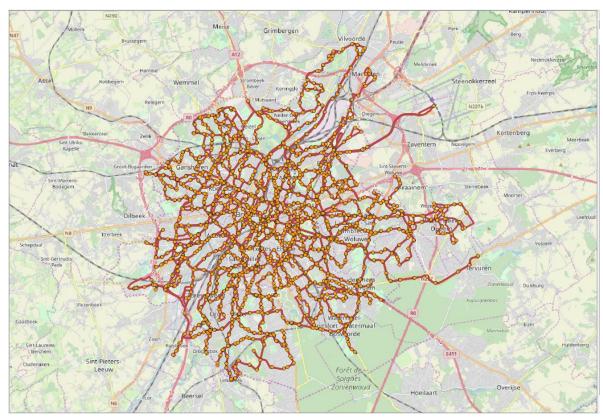
CREATE TABLE TripsInput (
 CarId integer REFERENCES Cars,
 TripId integer,
 Lon float,
 Lat float,
 T timestamptz,
 PRIMARY KEY (CarId, TripId, T));

CREATE TABLE Trips (Carld integer NOT NULL, TripId integer NOT NULL, Trip tgeompoint, PRIMARY KEY (Carld, TripId), FOREIGN KEY (Carld) REFERENCES Cars (Carld));

COPY TripsInput(CarId, TripId, Lon, Lat, T) FROM '/home/mobilitydb/data/trips.csv'
 DELIMITER ',' CSV HEADER;

```
INSERT INTO Trips
SELECT CarId, TripId,
    tgeompointseq(array_agg(tgeompointinst(
        ST_Transform(ST_SetSRID(ST_MakePoint(Lon,Lat), 4326), 5676), T) ORDER BY T))
FROM TripsInput
GROUP BY CarId, TripId;
```

Loading Data: GTFS Example


Source: STIB, Brussels

Duration: 28 days

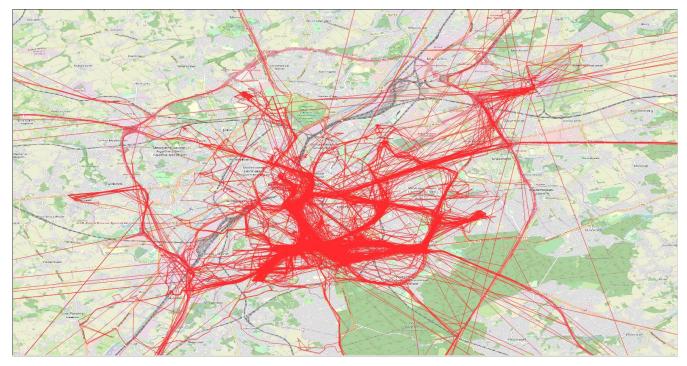
7 Oct- 3 Nov 2019

#Trips: 445,187

DB size: 9 GB

https://docs.mobilitydb.com/nightly/workshop/ch02.html

Loading Data: Google Location Data

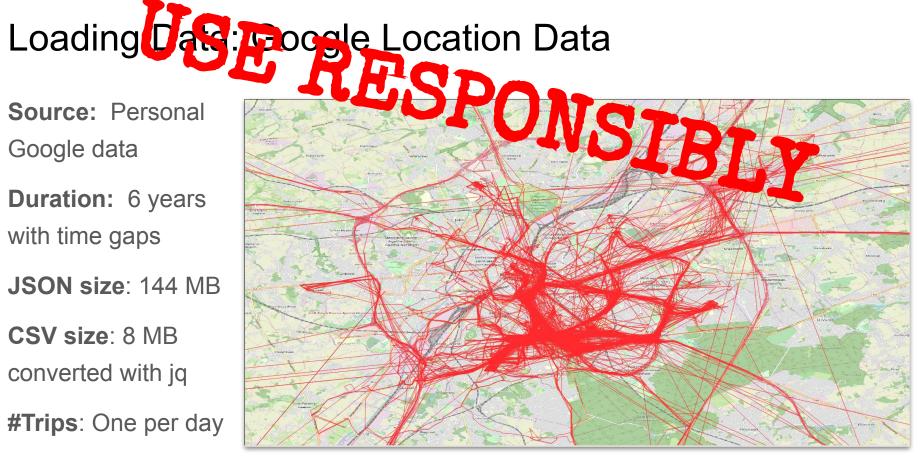

Source: Personal Google data

Duration: 6 years with time gaps

JSON size: 144 MB

CSV size: 8 MB converted with jq

#Trips: One per day


Source: Personal Google data

Duration: 6 years with time gaps

JSON size: 144 MB

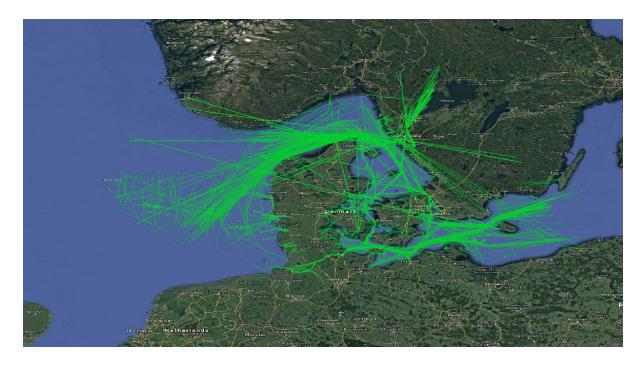
CSV size: 8 MB converted with jq

#Trips: One per day

https://docs.mobilitydb.com/nightly/workshop/ch03.html

Loading Data: Maritime Data (AIS)

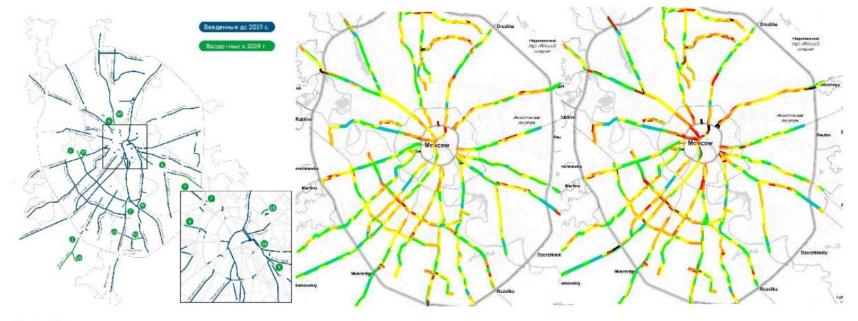
Source: Danish Maritime Authority


Duration: one day

April 1st 2018

#Rows: 10M

#Trips: 2,995


DB size: 1 GB

https://docs.mobilitydb.com/nightly/workshop/ch01.html

Data analysis - velocity maps

Moscow bus lanes

Поскавский мосгортранс

Nina Belyavskaya, https://pgconf.ru/en/2020/265266

7

Visualization: Cesium MF-JSON

Cesium extension for MF-JSON visualization

Kyoung-Sook KIM et al., Artificial Intelligence Research Center (AIRC) of AIST in Japan.

https://www.opengeospatial.org/pressroom/pressreleases/3083

Example: Spatial Projection

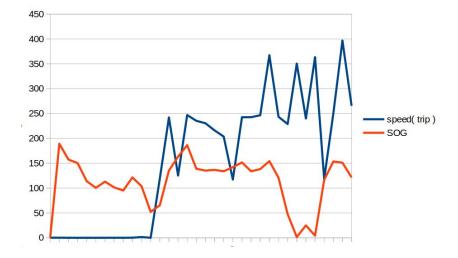
Ships(mmsi integer, trip tgeompoint, sog tfloat, cog tfloat, traj geometry) List the ships that commute between the ports Rødby and Puttgarden

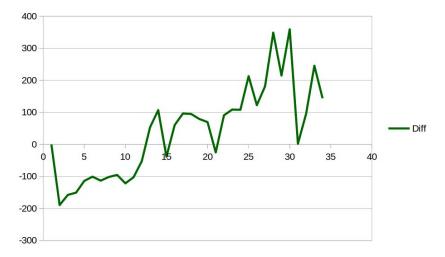
```
CREATE INDEX Ships_trip_idx ON Ships USING GiST(trip);
SELECT *
FROM Ships
WHERE intersects( trip, ST_MakeEnvelope(...) ) AND
    intersects( trip, ST_MakeEnvelope(...) )
The intersects function is index supported
```


Example: Temporal Operations

Ships(mmsi integer, trip tgeompoint, sog tfloat, cog tfloat, traj geometry)

Find all the trips that report SOG very different from the speed calculated from their trajectories (noise, broken sensor, ...).

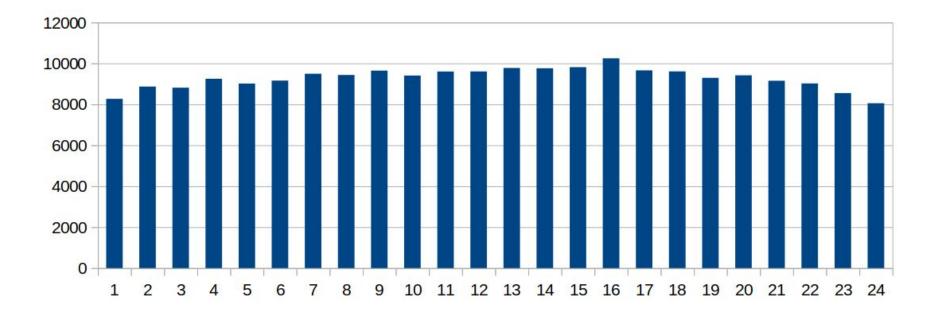

```
SELECT *
FROM Ships
WHERE twavg ( ( speed( trip ) * 3.6 ) - ( sog * 1.852 ) ) > 10
```


Example: Temporal Operations

SELECT *

FROM Ships

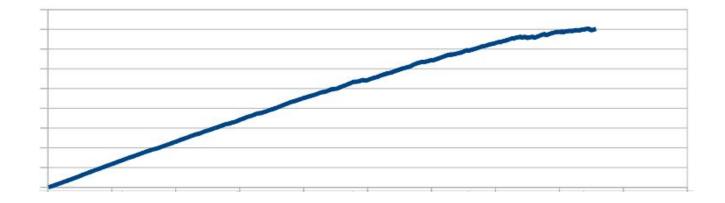
WHERE twavg ((speed(trip) * 3.6) - (sog * 1.852)) > 10


Example: Aggregation

Ships(mmsi integer, trip tgeompoint, sog tfloat, cog tfloat, traj geometry) Total distance travelled by ships per hour

```
WITH TimeSplit(Period) AS (
    SELECT period(H, H + interval '1 hour')
    FROM generate_series(timestamptz '2018-04-01',
        timestamptz '2018-04-02', interval '1 hour') AS H )
SELECT Period, SUM( length( atPeriod( Trip, Period) ) )/1000 travelledKms
FROM TimeSplit T, Ships S
WHERE T.Period && S.Trip
GROUP BY T.Period
ORDER BY T.Period;
```

Example: Aggregation


What is the total distance travelled by ships per hour

Example: Temporal Aggregation

Ships(mmsi integer, trip tgeompoint, sog tfloat, cog tfloat, traj geometry) Cumulative distance travelled by the ships at each instant during one week

SELECT tsum(cumulativeLength(Trip)) traveled
FROM Ships;

Example: Spatiotemporal Join

Ships(mmsi integer, trip tgeompoint, sog tfloat, cog tfloat, traj geometry)

Ships that come closer than 300 meters to one another

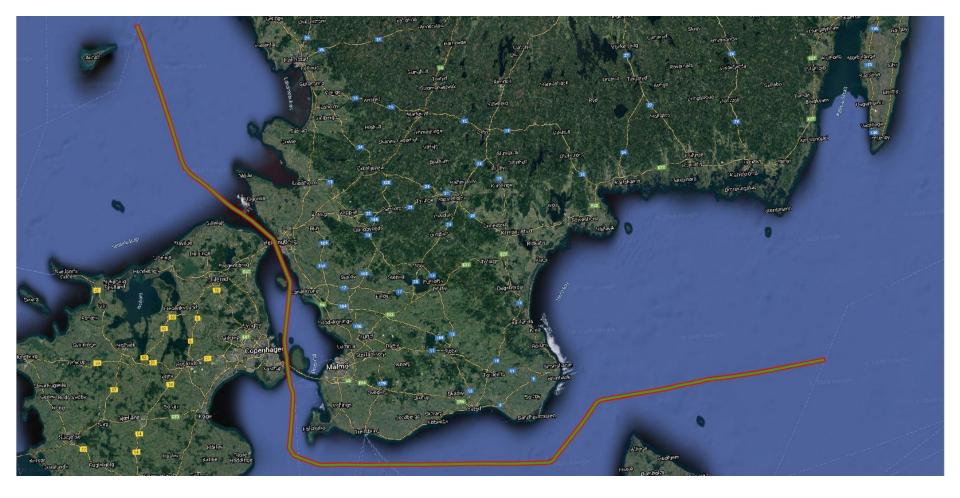
```
SELECT S1.MMSI, S2.MMSI, S1.Traj, S2.Traj,
    shortestLine(S1.trip, S2.trip) Approach
FROM Ships S1, Ships S2
WHERE S1.MMSI > S2.MMSI AND
    dwithin(S1.trip, S2.trip, 300)
```

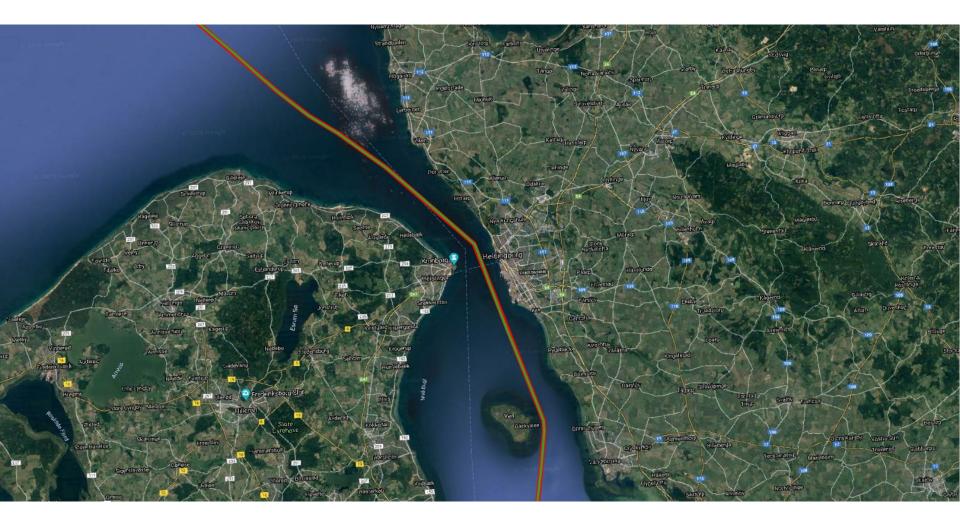

Example: Trajectory Simplification

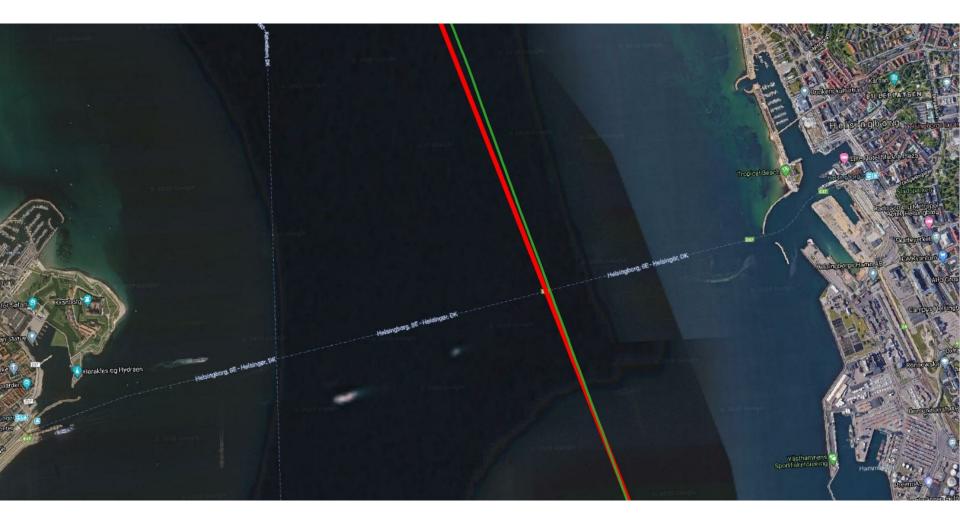
Compute simplified trip (with max. 100 m distance and 10 km/h speed difference)

```
UPDATE Ships SET SimpTrip = simplify(Trip, 100, 10 / 3.6);
```

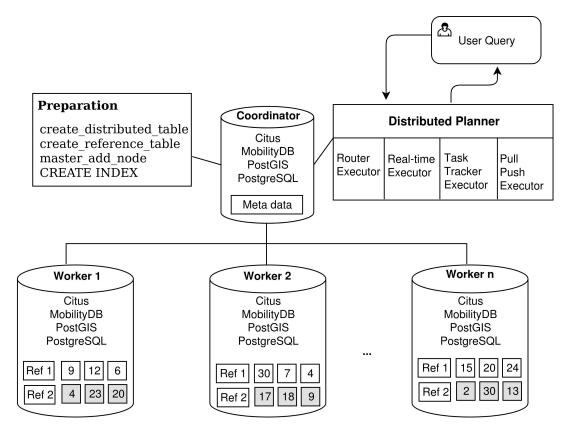
Minimum, maximum, and average number of instants in trips/simplified trips


SELECT MIN(numInstants(Trip)), MAX(numInstants(Trip)), AVG(numInstants(Trip)), MIN(numInstants(SimpTrip)), MAX(numInstants(SimpTrip)), AVG(numInstants(SimpTrip)) FROM Ships;


-- 2 23654 3490.44 2 7492 58.55

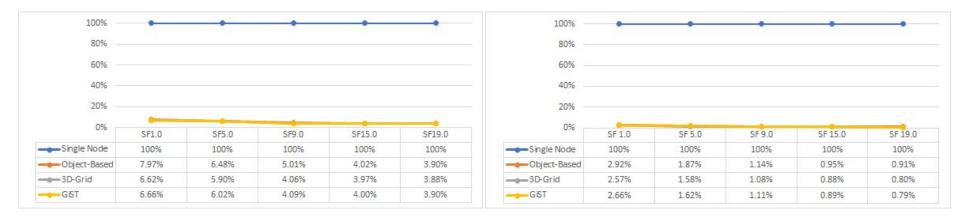

Column size trips/simplified trips

SELECT sum(pg_column_size(Trip)), sum(pg_column_size(SimpTrip))
FROM Ships;


-- "322 MB" "6554 kB"

Distributed MobilityDB Using Citus

Citus Distributed Query Planner: Query Classes

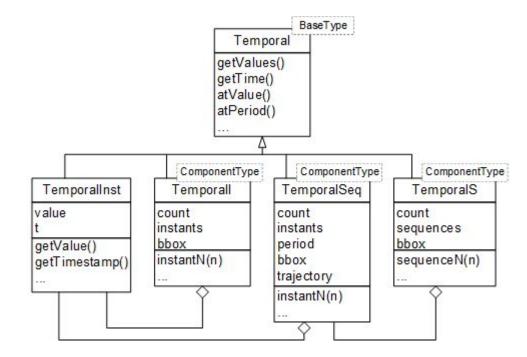

- **Routable queries:** Queries that can be fully evaluated on a subset of workers, the final result is a simple concatenation of the workers results
- Query sent to worker nodes, which optimize it using the regular PostgreSQL planner, executes it, and returns the result to the route executor

Query	Workers	Coordinator
SELECT * FROM Trips WHERE length(Trip) > 10000	SELECT * FROM Trips_1 WHERE length(Trip) > 10000	SELECT * FROM Result_1 UNION SELECT * FROM Result_2
		•••

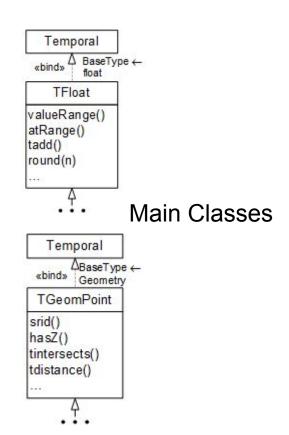
Performance

- Dataset generated by BerlinMOD, a benchmark for MOD
 - Simulated trips: to work, from work, leisure
 - Size can be controlled by a scale factor
- Workload: 17 BerlinMOD/R range queries of four categories
 - Object, Temporal, Spatial, Spatiotemporal

Experimental Results: Overall Gain


Run time gain on a cluster of 4 nodes

Run time gain on a cluster of 28 nodes


Python Support

- python-mobilitydb: database adapter to access MobilityDB from Python
- Open source, developed by MobilityDB Team
- Available on Github
- Supports both psycopg2 and asyncpg for PostgreSQL
- Uses postgis adapter for PostGIS
- An adapter for SQLAIchemy has been independently developed
- Also available on Github

Python Classes: UML Diagram

Template Classes

Future Work: Roadmap

- Distribution
 - Enabling non-co-located spatial and spatiotemporal joins
 - Supporting MobilityDB temporal aggregate functions
 - Extending the distributed planner of Citus
- Supporting multiple versions of PostgreSQL/PostGIS
- Development of other modules of the ecosystem
 - Visualization
 - ETL
 - Network-constrained points
 - Generic geometries/geographies
 - Mobility streams
 - 0

MobilityDB on Github

🗘 GitHub - UL8-CoDE-WIT/Mobility × +		-	o ×
← → C	Q \$	◎ ♣	•
build passing coverage 96% MobilityDB			
MobilityDB			
PostgreSQL object-relational database and its sp specification from the Open Geospatial Consortio Technically, MobilityDB is implemented as a Post			
Features Time types Period, PeriodSet, and Timest PostgreSQL, are used to represent time spar	ampSet which, in addition of the the TimestampTz type provided by NS.		

Thanks for listening !

Questions ?

