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Zusammenfassung

Mit der steigenden Anwendung von mobilen Computersystemen und Lokalisa-
tionsverfolgungstechnologien wird fortwährend eine große Menge an raumzeitlichen
Daten produziert. Solche Daten bieten für den Gesetzgeber, für Unternehmer innen
und für Wissenschaftler innen enorme Möglichkeiten, wenn sie richtig genutzt wer-
den. Die visuelle Analyse ist eine e↵ektive Methode zur Datenerforschung und
-analyse, um Wissen zu extrahieren, Muster zu erkennen und neue Erkenntnisse
zu gewinnen. Im Kontext von Mobilität 4.0 kann es eine wertvolle Methode sein,
um nachhaltige intelligente Verkehrssysteme zu gewährleisten, die Problemlösungs-
und Entscheidungsaktivitäten unterstützen. Aktuelle Lösungen sind jedoch in der
Regel domänenspezifisch und nicht für große Mengen von Mobilitätsdaten über
den gesamten Entwicklungsverlauf geeignet. In dieser Arbeit schlagen wir eine
Lösung vor, die eine Visualisierungsrahmenstruktur mit einem Datenbanksystem
für bewegliche Objekte kombiniert. Wir erzielen eine bessere Leistung, indem
wir jede Datenverarbeitung in den Bereich der Datenbank verschieben, weil Be-
nutzer innen Daten mithilfe von SQL-Abfragen e�zient filtern, transformieren und
zusammenführen können. Wir haben auch eine raumzeitliche Vektorkachelstrate-
gie gewählt, die das von der Datenbank an die Visualisierungsrahmenstruktur
übertragene Datenvolumen reduziert, die Ladezeit verkürzt und die Benutzerin-
teraktionen verbessert. Wir haben zwei Architekturlösungen vorgeschlagen: eine
mit einem Kachelserver, um die Datenmenge zu maximieren, die die Lösung ver-
arbeiten kann, und eine andere mit einem In-Memory-Kachelindex, der das schnelle
herausgeben der Datenvisualisierung priorisiert. Die nun vorliegende experimentelle
Studie hat gezeigt, dass unsere Lösung Trajektorien mit 3 Millionen Punkten (3
bis 7-mal mehr als der Stand der Technik) e�zient verarbeitet und aufgrund ihrer
Skalierbarkeit eine vielversprechende Lösung im Industriemaßstab ist.

iii



Abstract

With the popularisation of mobile computing and location tracking technologies, a
large volume of spatiotemporal data is being produced constantly. Such data can
o↵er immense opportunities to lawmakers, business people and scientists, if prop-
erly consumed. Visual analytics is an e↵ective way of conducting data exploration
and analytics to extract knowledge, identify patterns and generate insights. In the
context of Mobility 4.0, it can act as a valuable method to guarantee sustainable in-
telligent transportation systems supporting problem-solving and decision-making
tasks. However current solutions are usually domain-specific and are not suitable
for large volumes of full-trajectory mobility data. In this work, we propose a so-
lution that combines a visualisation framework with a Moving Objects Database.
We obtain better performance by pushing any data processing to the database
side, since users can filter, transform and aggregate data e�ciently using SQL
queries. We also adopted a spatiotemporal vector tiling strategy, which reduces
the volume of data transferred from the database to the visualisation framework,
decreasing load time and improving user interaction. We proposed two architec-
tural solutions: one with a tile server to maximise the amount of data the solution
can handle, and another with an in-memory tile index that prioritises fast data
visualisation rendering. The experimental study showed that our solution e�-
ciently handled trajectories containing 3 million points (3 to 7 times more than
the state-of-the-art) and is a promising industry-scale solution due to its scalable
nature.
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1 Introduction

The majority of activities in modern society are centred around spatiotemporal
phenomena. Mobility is intrinsic to our lives. For instance, everyday people travel
from home to work/school using di↵erent means of public and private transporta-
tion. Goods are transported to supply industries and businesses. Packages are
shipped to our homes. Weather phenomena such as hurricanes form and move
around di↵erent areas in the world. Populations of animals engage in long dis-
tance migrations, and many more other examples. In all these, there is a challenge
of extracting knowledge and producing insights by analysing the data associated
with it, either to have a proper understanding of the underlying phenomena or to
make decisions.
With the evolution and popularisation of location tracking technologies, such

as Global Positioning System (GPS), Automatic Identification System (AIS) and
mobile computing, a large volume of spatiotemporal data is being produced con-
stantly. As a consequence, challenging problems with spatiotemporal data became
common in various areas, requiring an ecosystem of tools to e�ciently acquire,
ingest, store, manage, retrieve, transform, clean and analyse moving object big
data.
Visual analytics is an e↵ective way of conducting data exploration and analytics

to extract knowledge, discover patterns and generate insights. It combines the
strengths and capabilities of humans, through their visual perception, reasoning
and potential for creative thinking to generate insights, and machines, through
their ability to process a high volume of data that would be too large for humans
to tackle it alone. Currently, however, there is not an industry-scale solution ca-
pable of conducting visual analytics on a high volume of mobility data. Therefore,
in this work, we present a solution to this problem by connecting a visualisa-
tion framework to a moving objects database (MOD) which makes it possible to
push most of the processing to the database, reusing its operations and indexing
strategies. This way, users can filter, transform and aggregate data e�ciently on
the database side, and generate data visualisations with only the relevant data.
To deal with a large volume of data, we adopted a spatiotemporal vector tiling
strategy, which reduces the volume of data transferred from the database to the
visualisation framework and decreases its latency, making it possible to conduct
interactive visual analytics e�ciently.
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1.1 Motivation

Mobility is ubiquitous in contemporary daily life and impacts the economy, en-
vironment and quality of life of the population. Transportation and mobility are
crucial to sustainable development since it directly impacts the economy. The
United Nations includes sustainable transport in its Sustainable Development
Goals (SDGs) [26]. Sustainable transportation promotes economic growth, easy
accessibility to public services such as culture, leisure and education, and should
improve social equity respecting the environment. The importance of transport
for climate action is immense since it directly contributes to global greenhouse gas
emissions, which are expected to increase with the fast growing urbanisation.
Because of that, a lot of investments are happening towards intelligent trans-

portation systems, which aims to advance transport technology to improve e�-
ciency, accessibility, safety, comfort and more importantly sustainability. As an
example, the European Commission has spent e↵orts towards assessing future so-
cietal challenges related to transport demand and supply, focusing on cross-modal
intelligent solutions [24].
With the introduction of Mobility 4.0 [17], technologies such as autonomous

driving, intelligent transportation systems and mobility-as-a-service have been
adopting data science to overcome inherent mobility challenges. This movement is
surrounded by the idea that we can take advantage of the digitalisation and connec-
tivity of transportation that constantly produces an increasing volume of data to
come up with improved solutions to our current ine�ciency problems. Therefore,
there is a need to develop methods and technologies to monitor, identify patterns,
generate insights and serve as leverage for problem-solving and decision-making
activities in the transportation systems planning, management and operations.

1.2 Objective

In this work, we tackle the problem of conducting visual analytics for large-scale
mobility data. For that, we need to overcome the challenges of scalability and
usability: produce trajectory data visualization e�ciently and without requiring
advanced skills from the users. We propose methods and system architectures for
conducting visual analytics on top of a MOD. Such solutions are able to handle
large-scale full trajectory data e�ciently, generating interactive data visualisations
suitable for extracting valuable knowledge and insights from mobility data.
The main goal of this work is to create a method for conducting visual analytics

on a MOD. As secondary goals, the proposed solutions should:

• minimise data transfer between database and visualisation framework, so
users can interact with the data with minimal latency;
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• generate visualisations based on database queries, so users can filter, trans-
form and aggregate data e�ciently on the database side;

• allow visual analytics considering full trajectories, not only origin and desti-
nation points;

• handle a large volume of moving objects data.

1.3 Contributions

Previous work had solved the problem partially. To our knowledge, [31] is the
only work that explored visual analytics on a MOD. Other works proposed stand-
alone visualization tools that process an input file and use their own in-memory
data structures. Yet in [31], the solution transfers data from the database to an
existing visual analytics tool, which does not scale. [11] propose visual analytics
by querying a database, which is part of the goal of this thesis, but they used a
custom spatial database and considered only origin and destination points (not the
full trajectory) in their analysis. Our solution proposes a breakthrough in visual
analytics architecture. The novelty of our work is therefore a solution to e�ciently
conduct visual analytics of large-scale full trajectory data on a MOD. Hence, we
present the following contributions:

1. We introduce a novel strategy to implement vector tiling for spatiotemporal
data;

2. We propose two architectural designs of a framework to conduct visual ana-
lytics on top of a MOD using vector tiles, first with a tile server and second
with an in-memory tile index;

3. We implement an industry-scale visual analytics framework for both archi-
tectural designs aforementioned, using MobilityDB and a WebGL powered
visualisation framework.

1.4 Organisation

Chapter 2 gives an introduction to the relevant concepts and tools, fundamental
for the understanding of the solution, which is then presented in Chapter 3. In the
solution, we discuss the vector tiling strategy adapted for spatiotemporal data,
and propose two architectural solutions prioritising either dealing with a high
volume of data or minimal data transfer and rendering latency. In Chapter 4
we provide details on the implementation of our solutions and the results of its

3



experimental evaluation. Chapter 5 includes a discussion about related work and
how our solution di↵ers from the state-of-the-art. Finally, we drive conclusions in
Chapter 6 and present directions for future work.
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2 Scientific Background

This section gives an theoretical foundation on relevant topics and technologies
that will be necessary to understand the solution approach. It includes a brief
introduction on visual analytics, moving object databases and vector tiling.

2.1 Visual Analytics

The democratisation of portable devices and the constant evolution of technologies
to create, collect and, more importantly, store data resulted in a technological
revolution we have been experiencing recently: the data revolution. We live in
a world where many spheres of human activity generate and store vast amounts
of data on a daily basis, from every branch of industry and business to political
and personal activities. Although such a high volume of data can o↵er immense
opportunities to lawmakers, business people and scientists, raw data has no value
in itself. Alternatively, we need to be able to extract information contained in it
to use it for making decisions.
When the ability to extract information is not as fast as collecting and storing

data, it results in the information overload problem, which refers to the danger of
getting lost in data. If we lack the ability to properly handle a high volume of data,
we lose crucial opportunities to the information overload, eventually resulting in
the loss of time and money. Therefore, there is a need to develop e↵ective tools and
methods to exploit large and heterogeneous data resources, extracting knowledge
and identifying hidden opportunities that it might o↵er.
Data visualisation is an indispensable practice in the analysis of big data. It

translates data into a visual context to leverage the power of the human visual
system to extract information, identify patterns and pull insights from the visual
representation of data, which could not be easily done by computers. Historically,
data visualisation has proven to be an incredibly e↵ective practice for centuries.
In fact, two of the most famous examples of successful use of data visualisation to
represent and analyse data are dated from the 19th century. Published in 1869,
Minard’s visualization of Napoleon’s Russian campaign, illustrated by Figure 1a,
uses cartographic techniques to numerically portrait Napoleon’s disastrous losses
su↵ered during the Russian campaign between 1812 to 1813. It successfully imple-
ments visual representation techniques, such as shape, colour and size, to encode
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six di↵erent variables pertinent to the campaign, including changes in the size of
troops through time and geographic location. The second example is a map pro-
duced by John Snow in 1854 about a serious outbreak of cholera in London’s Soho,
shown in Figure 1b. By representing each cholera death as a bar on the map of
Soho, Snow was able to ascertain clusters and eventually identified the source of
the outbreak as one of the public water pumps. Snow’s work is an example of a
data visualisation that was e↵ectively used for data analysis and decision-making.

(a) (b)

Figure 1: Famous data visualisations dated from the 19th century [36]. (a) Mi-
nard’s visualization of Napoleon’s Russian campaign. (b) Snow’s map of the 1854
outbreak of cholera in London.

Throughout time, visual exploration has improved with the democratisation of
more powerful technology and computer graphics. If we compare with the afore-
mentioned examples, nowadays visualisations can be easily produced and highly
interactive. In general, such systems provide interaction mechanisms such as se-
mantic zoom (automatically adapt what is visible and how is displayed according to
levels of detail), brushing (visually select a subset of data with a device), and link-
ing (display a subset of data among multiple visualisations, such as a dashboard)
[20]. Such interactivity enables quick hypothesis making and testing, fundamental
steps for the data exploration process. The term visual analytics originates from
the idea of providing better and more e↵ective ways to understand and analyse
data through interactivity.

2.1.1 Definition

Visual analytics was early defined as “the science of analytical reasoning facil-
itated by interactive visual interfaces” [35, p. 4]. It goes beyond information
visualisation, focusing primarily on achieving e↵ective understanding, reasoning
and decision making by combining automated analysis techniques with interactive
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visualisations. In order to be successful, it needs to take into consideration not
only data exploration and visualisation methods but also human factors such as
semiotics, cognition, perception and interaction to create simple and yet e↵ective
visual analytics systems. The main goal is to turn the information overload into an
opportunity by helping users: derive insights from massive, dynamic and complex
data; discover non-obvious or unexpected information; provide timely, reasoned,
and clear assessments; and use these assessments for decision-making [19].
On a large scale, visual analytics is designed for combining the strengths and

capabilities of humans and machines for the most e↵ective results. Specifically, hu-
mans apply their visual perception, reasoning and potential for creative thinking to
generate insights, while computers process and mine data that would be too large
for humans to tackle it alone. Visual representations are often the most straight-
forward method to convey information to our brains, and by adding interactivity
to it, users have the chance to explore and analyse data from di↵erent perspec-
tives and levels of abstraction, making associations to develop valuable insights.
Figure 2 illustrates the idea that visual analytics can be described by the interplay
of data analysis, visualisation and interaction. It needs to take into consideration
human cognition and perception to build e↵ective interactive visualisations, and
it should employ methods developed in the field of information retrieval and data
mining to facilitate data analysis.

Figure 2: Visual analytics as the interplay between data analysis, visualization,
and interaction methods [22].

2.1.2 Visual Analytics Process

To better understand the interaction between data, visualisations and models to
achieve knowledge discovery, [19] proposed an abstract overview of the stages and
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transitions in the visual analytics process, illustrated by Figure 3. The first step
refers to data preprocessing tasks, such as data cleaning, normalisation, aggre-
gation and integration of heterogeneous data sources, represented by the arrow
Transformation. After the preprocessing, one can choose between conducting au-
tomated data analysis or visual data exploration.

Figure 3: The visual analytics process [19].

If automated data analysis is performed first, a model of the original data is
generated through data mining methods, which can later be refined by interacting
with the data. Analysts can evaluate the models using visualisation to modify
parameters or select other analysis algorithms. The exchange between visual and
automated analysis promotes a continuous improvement and validation of the re-
sults in order to gain valuable and reliable knowledge. On the other hand, if visual
data exploration is used first, the analyst maps the data to visualisations and inter-
acts with it to steer model building in the automatic analysis. In summary, in the
visual analytics process, knowledge can be obtained either from visual exploration,
automated analysis or the continuous interaction between both.
However, there are many challenges in designing visual analytics systems. One

concerns generalisation: it is common to find researches and tools that are too
application-oriented and domain-specific, meaning that they o↵er solutions to spe-
cific fields and are not generic enough to apply to other problem domains. Pro-
viding real-time interactivity is another challenge when handling large datasets.
We need to be able to process large amounts of data with minimal latency since
real-time interactivity plays a crucial role in the data analysis process. Hence,
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visual analytics may adopt caching strategies, distributed computing, hardware
acceleration such as Graphics Processing Unit (GPU) and scalable architectures
to guarantee high speed and low latency interactive visualisations. A third chal-
lenge concerns how e↵ective a visual representation can be when considering large
and high-dimensional data. It is important to avoid visual clutter and confusing
representation which can be easily achieved by filtering and aggregation strategies
without compromising the discovery of patterns and the generation of insights.
Visual analytics research is a highly interdisciplinary field, which combines dif-

ferent related areas such as statistics, data management, cognitive science, visu-
alisation, among others, as illustrated by Figure 4. The integration of all these
diverse areas makes visual analytics a scientific discipline on its own, resulting in
the potential to solve problems that were not e↵ectively tackled by domain experts
individually and to overcome the challenges aforementioned.

Figure 4: Scope of visual analytics [21].

2.2 Moving Object Databases

When working with databases, a lot needs to be considered when deciding what
technology to use. There is a variety of database management systems (DBMSs)
with extensions to deal with data from di↵erent natures. Therefore we need to
understand the phenomenon the data is representing and the dimensions associated
with it to make a smart decision. Take for example a scenario where we want to
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store and analyse hurricanes. We could represent each of them as an event that
happened to a location at a specific time. A spatial database would be enough to
answer queries such as how many hurricanes happened in each country in the past
year, or what month had the most hurricanes in the state of Florida, USA. The
hurricane could even be represented as a polygon so we could access its impact
based on its area or height. Now consider that with a satellite imagery data source,
we identified that a single hurricane moves, and its shape changes with time. How
would we structure and index a database to store this kind of data? What kind of
query language would be necessary to extract information such as what direction
they move, at what speed, and how the area varies with time. A spatial database
would probably not be as straightforward and e�cient in this situation, since now
we are dealing with spatiotemporal data.
A large volume of spatiotemporal data is produced with the advances and popu-

larisation of wireless and mobile computing, and the evolution of location tracking
technologies, such as GPS, AIS, radio-frequency identification (RFID), sensor net-
works, Global System for Mobile Communications (GSM) localisation and WiFi
positioning. As a consequence, challenging problems with spatiotemporal data
became common in various areas, such as the manufacturing industry, transporta-
tion, ecology, social computing, meteorology, epidemiology, telecommunications,
among many others. Therefore, there is a pressing demand for an ecosystem of
software tools to e�ciently acquire, ingest, store, manage, retrieve, transform,
clean and analyse moving object big data.
A MOD is a piece of software to manage moving object data. It allows one

to represent and query any database entities that are time dependent and have
continuously changing geometries such as vehicles or animals, “either online for
current movement, or o✏ine storing large sets of trajectories, or histories of move-
ment” [14]. Research in MODs has been active since the early 2000s, developing
tools and methods regarding various aspects such as data modelling, operations
and indexing. As illustrated by Figure 5, [15] point out the di↵erence between
MODs and spatiotemporal databases: the former emphasises that geometries may
change continuously, whereas the latter supports only discrete changes.
In the literature, there are multiple research prototypes of MODs and systems to

manage and analyse big trajectory data. SECONDO [16], HERMES [27], Hadoop-
Trajectory [4] and UlTraMan[8] are a few examples. Additionally, MobilityDB [37]
is proposed as a mainstream system targeted for industrial use.

2.2.1 MobilityDB

As mentioned, MobilityDB was proposed to fill the gap of an industrial-scale MOD
that has not been achieved by any previous research prototypes. It is an extension
of PostgreSQL and PostGIS, both largely adopted in the industry, that supports
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(a) discretely changing (b) continuously changing

Figure 5: Changing points and regions through time (vertical axis) [15].

data type of moving objects, including a rich set of temporal and spatiotemporal
query operations. MobilityDB is open-source, complies with Open Geospatial
Consortium (OGC) standards on moving features and “is by far the only existing
moving object database that supports full SQL” [37].
Let’s consider a vehicle trajectory as an example. In a spatial database, it will be

represented as a collection of discrete observations (list of spatial points, each with
a timestamp) constrained by the technology that generated the data. If we want
to query the position of the vehicle at a specific timestamp that is actually between
two observations, we would have to interpolate the data we have to compute the
location, which can be complex to do over a Structured Query Language (SQL)
query. MobilityDB, on the other hand, o↵ers the possibility to query the position
of an object at a particular timestamp, or query the particular timestamp an
object was at a given location. In MobilityDB, the individual observations are
connected and represented as a continuous phenomenon to answer queries like
those aforementioned.
Now let’s imagine that during the trajectory the vehicle remained stopped at a

location for a certain period. This will result in multiple consecutive observations
in the same location. However, the earliest and the oldest observations on the same
location are enough to represent the information that the vehicle is stationary, and
the observations in between are redundant. MobilityDB simplifies the trajectory
removing such redundant observations, which results in a more compact format,
less space consumed and faster queries, without losing any information. It only
stores the appropriate observations to describe the same trajectory. The same
happens if the vehicle is moving in a straight line with constant speed: we do
not need to store the intermediate points along the segment, only the extremities,
since the data is stored as a continuous event and a linear interpolation can be
used.
MobilityDB implements the concept of type constructors, to define extensible

11



temporal types, which is a combination of a time type and a base type. Time
types consist of timestamp (single instant), timestamp set (collection of discrete
instants), period (continuous interval) and period set (disconnected collection of
continuous intervals), whereas the base type can be PostgreSQL or PostGIS types,
such as bool, int, float, text, geometry(Point) and geography(Point). For example,
if we combine the period time type with the geometry(Point) base type, it would
generate a temporal point that could be used to represent the continuous trajectory
of a vehicle. Figure 6 illustrates all possible temporal types originated from the
geometry(Point) base type.

(a) INSTANT(Point) (b) INSTANTS(Point)

(c) SEQUENCE(Point) (d) SEQUENCES(Point)

Figure 6: MobilityDB’s temporal types originated from the geometry(Point) [37].

The advantage of using native types from PostgreSQL and PostGIS is that any
enhancement done to these tools will also be applied indirectly to MobilityDB.
Additionally, MobilityDB extends PostGIS Application Programming Interface
(API), taking into account the temporal feature. For instance, in PostGIS, one
can measure the spatial distance between two static objects. In MobilityDB it is
possible to compute the spatiotemporal proximity between two objects, which is
the distance throughout time, given that either or both objects are moving. This is
useful in the field of epidemiology, for instance, to conduct contact tracing analysis
to identify when or if two moving objects (individuals) happened to be close to
each other.

2.3 Vector Tiles

Throughout time, cartographers have always worked towards making maps rele-
vant, easily accessible and constantly updated. The democratisation of the Web
has changed drastically the way we address spatial information, and consequently,
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the way maps are designed, produced, delivered and more importantly how we
procure and utilise it [7].
With the arrival of Web 2.0, mapping applications became ubiquitous on the

Web. New platforms adopting interactivity and collective intelligence emerged of-
fering wider and more democratic access and ownership of geographic information
for not only professionals but also dwellers. As a result, novel technological solu-
tions were proposed to attend to the demand for fast rendering in Web mapping,
for example, tiled maps.
Map tiling is the most popular strategy to render and navigate maps. Instead

of fetching a single large image for the whole viewport, it works by dividing the
original space into rectangles (tiles) and only fetching the ones that are visible to
the user, which is then stitched together to be displayed. Consequently, the data
transfer is reduced since only the data within the current viewport at a certain
zoom level needs to be obtained, resulting in a faster rendering. Additionally, since
the tile boundaries are pre-defined, tiling operations can be performed in advance
and cached, to enhance performance. This map tiling strategy can be used for
raster or vector tiles.
Raster tiles denote that the spatial data for each tile is encoded into an indi-

vidual bitmap image file such as PNG or JPG. It is usually adopted for storing
continuous geographic information such as satellite and aerial imagery. The major-
ity of maps services available on the Web today, such as Google Maps, Bing Maps
and OpenStreetMap, use raster tiles as visual representations since it was the first
tiling strategy to emerge and its transmission methods are easily implemented.
However, rendering raster imagery can be CPU and memory consuming, and

it is inadequate in specific cases where the application requires user interactivity
with the data presented on the map [6]. Such interactivity is essential in spatial
data analysis applications. For this reason, vector tile maps were proposed to make
possible the interaction between users and map objects [3].
Tiled vectors are a way of representing real-world geographical features through

points, lines and polygons in the form of tiles. Di↵erent from raster tiled maps,
which are composed of pre-rendered map images, it returns vector data clipped to
the boundaries of each tile to be rendered in map symbolisation on the client-side.
Figure 7 illustrates the principles of vector tiling, where the original geometries
are clipped to the tile boundaries.
Vector tiled maps have several advantages compared to raster tiled maps [12].

Since vector data is usually smaller than bitmap images, data transfer is reduced
if compared to a tiled raster map, resulting in less bandwidth needed and faster
rendering. Moreover, it allows better flexibility in how the data is presented (e.g.,
graphic generalisation and label placement) since the styling can be performed
during rendering time on the client-side, and may even be updated dynamically
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part of them is based on XML [13,14] like KML, SVG, GML and SLD. XML
based formats are e�cient for spatial data exchange, but usually too verbose for
a fast transmission, as required for vector web mapping. Some formats have been
developed specifically for this purpose, like the GeoJSON format. Some vector
formats allow to describe the object properties either as a list of (key,value),
following the GIS practice, either embedded within HTML code, like in KML.
File compression also helps making the files smaller (like zip compression for
KMZ files, and several JSON compressions for GeoJSON). Beside vector data
formats, style formats allow to describe how vector data are rendered. In some
vector formats like SVG and KML, the styles are encoded within the data file.
Some other formats like geoCSS, GSS and SLD allow an independent encoding
of the data and their associated styles.

Vector tiling. Existing vector web mapping applications often load a full file
containing vector data the user will never see, because outside of its current
view. Vector tiling [15,16,17] allows to ensure only the data within the user’s
view are requested and loaded by the client. The principle is to decompose
the vector dataset into di↵erent parts, each of them corresponding to vector
data contained within a tile (see figure 3). In the case vector objects belong
to several tiles, these objects are cut into pieces and each piece is assigned to
the corresponding tile. Only the tiles are published on the server (usually one
file per tile) and the client requests, caches and renders only the suitable tiles
depending on its view and zoom level. Useless data outside of the view are not
retrieved, which allows a performance improvement. A drawback of this method
is the necessity to reassemble the objects on the client side. Compared to raster
tiling, vector tiling is relatively new in web mapping and not well established
yet.

Fig. 3. Principle of vector tiling

Multi-scale data and generalization. The performance problem in vector web
mapping is often due to the use of too detailed vector data. Indeed, such data are
cumbersome to transfer, load and render, and may also not be legible as shown
on figure 2. The solution is to provide to the client vector data with a level of
detail suitable with the chosen zoom level. When the zoom level changes, new
vector data with a suitable level of detail for this zoom level are requested, cached

Figure 7: Principle of vector tiling [12].

given user interaction. Due to the on the fly rendering by the client, vector tiles also
make possible the implementation of innovative data visualisation techniques, such
as animated visualisations with moving and changing features. Another advantage
over raster tiling is that vector tiles have more control over the level of details given
a map scale. For di↵erent zoom levels, geometries can di↵er. For instance, a feature
that is originally a polygon can be simplified to a point given a scale that does
not require such a high level of details, avoiding redundant vector data that will
not make a di↵erence when rendering and, therefore, resulting in smaller tiles and
faster data transfer.

2.3.1 Tiling Strategy

The strategy behind tile-based mapping services relies on tessellating the whole
world into non-overlapping squares, i.e., tiles, that will reconstruct the original
map when combined. It typically has multiple discrete zoom levels and for each,
the tiles are defined with di↵erent sizes so as to guarantee the corresponding level
of details of the map [32]. For instance, in higher zoom levels the map displayed
includes more details and therefore each tile covers a small area of the original
map. In contrast, maps in lower zoom levels require fewer details, hence each
tile represents a bigger area of the original map. Therefore, multiple zoom levels
represent multiple map views.
This strategy of sectioning the map area depending on the zoom level follows

a pyramid type structure, as shown by Figure 8. The lowest zoom level, the
pyramid’s top, consists of one tile with the size of the whole map and the least
level of detail. Each subsequent zoom level has 4 times the number of tiles as its
predecessor.
As a means to better manage the multiple tiles of di↵erent zoom levels, tile-based

maps use a simple coordinate system presented by OGC (Open Geospatial Con-
sortium) when they released the WMTS (Web Map Tile Service) as the standard
protocol in 2010 [32]. Each tile has z/x/y coordinates, where z is the zoom level
and x and y the position of the tile. The tile on top of the pyramid has coordinates
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Figure 8: Pyramid of the tiling strategy based on zoom level [29].

0/0/0. Then, in the following zoom level, the map is divided into four equal tiles:
1/0/0 represents the top-left tile, 1/1/0 the top-right, 1/0/1 the bottom-left, and
1/1/1 the bottom-right tile, as shown by Figure 9, and so on. Most tile-based
maps use a Web Mercator (WGS 84) projection, which is considered the de facto
standard in tile-based mapping services.

Figure 9: Coordinate system used by common tiling schemes [33].

Depending on the style some features are rendered, a map can be rendered with
distortion when individual tiles are stitched together to form the complete map.
Figure 10 presents an example of a road that crosses multiple tiles and is rendered
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with distortion around the tile borders.

Figure 10: Example of a vector tile map with distortions [34].

To overcome this issue, vector tiles are usually created with an expanded size
given a bu↵er. For example, if a tile of size 256 is requested with a bu↵er of 32, it
will return a tile of size 288. That means the vector tile will contain data that is
outside the visible area since it will be overlapped by the neighbour tiles.
By introducing a bu↵er to the vector tile during creation, features will be ren-

dered beyond the tile boundaries promoting a visual continuity since the features
of one tile will overlap their continued features on the neighbour tiles. Figure 11
presents the comparison of rendering a road that crosses multiple two tiles with
and without bu↵er. (a) illustrates how one of the tiles is being rendered before the
clipping phase without bu↵er and (b) includes the resulting image after the di↵er-
ent tiles are rendered and stitched together. (c) and (d) represent the equivalent
but with a bu↵er.
Given a certain zoom level, a tiled map only renders the appropriate collection

of tiles that are visible on the viewport with the corresponding details that are
visible within the scale. Even though this sectioning strategy can generate a lot of
tiles for a single dataset, there are various e�cient techniques and systems respon-
sible for generating, encoding, storing, indexing and transmitting tiles. Mapbox
Vector Tiles (MVT), Geography Markup Language (GML), GeoJSON and Topo-
JSON are some of the most popularly used vector formats for encoding vector
tiles. Additionally, a large number of well established open source and commercial
software support vector tiles, including databases, Geographic Information Sys-
tem (GIS), data servers, web clients, among others. Some databases even make
available functions to fetch spatial data in a form of encoded tiles.
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(a) raw tile without bu↵er (b) rendered tile without bu↵er

(c) raw tile with bu↵er (d) rendered tile with bu↵er

Figure 11: Use of tile bu↵ers to avoid rendering distorted features [34].

2.3.2 Mapbox Vector Tiles

Mapbox has defined an open standard for vector tiled maps, including specifica-
tions around how data is stored and encoded. Its first version was released in 2014
and nowadays is one of the most famous and widely used standards in distributing
vector tiles. The specifications [25] include directions about the projection of ref-
erence, bounds, feature and attributes encoding, and file format. MVT uses Web
Mercator (WGS 84) as the projection of reference and Google Protocol Bu↵ers
as an encoding format for lightweight data serialisation, generally achieving good
performance.
Various applications, ranging from parsers and GIS to databases are compatible

with MVT1. For instance, PostGIS has two functions used to generate map tiles:
ST AsMVTGeom and ST AsMVT. The first function is responsible for clipping
the spatial data to the provided tile boundaries, simplifying features to accommo-
date the level of details given the zoom level, and converting data from cartesian
coordinates to tile coordinate space. The second is responsible for encoding the
geometry generated by the previous function and other attributes into the binary
MVT representation with protobuf format.
Normally, a map tile architecture includes a web tile server responsible for

converting tile coordinates into SQL queries that fetches the equivalent vector

1https://github.com/mapbox/awesome-vector-tiles
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tile. The map client, for example, an application for rendering the map in a web
browser, is responsible for sending requests to the tile server with the tiles that are
visible on the viewport, which are converted to queries to the database and then
executed and returned to the client to be displayed. Figure 12 illustrates an archi-
tecture with a web client sending an HTTP request to a tile server implemented
in Python and a PostGIS database.

Figure 12: Example of a vector tile architecture with a tile server consuming tiles
from PostGIS [29].
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3 Solution

In this work, the main goal is to make it possible to conduct visual analytics on
big trajectory data from a MOD. To achieve it, the solution needs to meet the
following requirements:

• R1: it should be able to handle a large volume of data (millions of points)
that might not fit into memory;

• R2: it should allow querying the MOD to select the data since the user might
be interested in filtering the original dataset or using aggregation strategies;

• R3: it should load data into the visualization framework with minimal la-
tency;

• R4: it should provide interaction mechanisms for e↵ective visual analytics,
such as semantic zoom, brushing and linking;

• R5: it should render data visualisations e�ciently to make real-time inter-
activity possible.

We propose two solutions that guarantee most or all requirements above using
vector tiling strategy. The first solution takes advantage of a vector tile server
that serves only the data that is visible to the user, focusing on handling a large
volume of data (R1). The second solution, on the other hand, sacrifices the ability
to handle a large volume of data (R1) to guarantees minimal latency when fetching
vector tiles (R3) by implementing an in-memory tile index on the client-side.

3.1 Spatiotemporal Vector Tiling

In order to be able to generate vector tiles for moving object data, we propose a
tiling strategy to deal with spatiotemporal data. This approach is fairly similar
to generating vector tiles for spatial data, including the same operations but with
minor modifications to handle the temporal dimension. The steps (and their or-
der) to compute vector tiles might vary according to the adopted vector map tile
standard and characteristics of the system that implements it.
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As explained in Section 2.3, a vector tiling strategy consists primarily of clip-
ping the vector data to the boundaries of the tile, and might include other steps
such as simplification, projection and encoding. Below, we describe some of the
steps that are commonly found in popular vector tiling approaches, such as the
ones implemented by popular spatial databases. We also highlight the strategy
necessary to handle spatiotemporal data, more specifically for the simplification,
clipping and encoding steps.

3.1.1 Filtering Small Features

Depending on the zoom level, there are features that might be too small to be
visible if we try to render it and thus could be filtered out. This step is responsible
for dropping geometries that are smaller than a provided resolution. Typically, the
resolution is based on the tile’s boundary width and height (which are proportional
to the tile’s zoom level) and the tile’s extent (which is the tile size in the tile
coordinate space).
Figure 13 exemplifies the filtering stage with a feature that is smaller than the

resolution and therefore would be dropped out, and a second feature that is bigger
than the resolution and will be included in the vector tile. In this example, the
tile extent is 8, the horizontal resolution is tile width divided by extent (width of
a pixel) and vertical resolution is tile height divided by extent (height of a pixel).
Feature A is excluded because its width is smaller than the horizontal resolution
and its height is smaller than the vertical resolution. Feature B is not excluded
because its height is bigger than the vertical resolution, even though the same is
not true for the horizontal resolution.

3.1.2 Simplifying Geometries

Similar to the previous step, the zoom level dictates the level of details of a tile.
Even for complex geometry, we do not see many details of it when we zoom out.
Hence, we can implement a step to simplify the original geometry, decreasing its
number of vertices and consequently its size. More lightweight geometries result
in a faster response.
The Ramer–Douglas–Peucker algorithm [28, 9] is a suitable alternative to sim-

plify spatiotemporal geometries. Given a curve composed of points that define line
segments and a distance dimension ✏, it iterates over the inner points removing
those that the resulting curve with its absence does not deviate more than ✏ from
the original curve. Figure 14 illustrates an example of simplification using this
algorithm, where the three points in red were removed from the original curve
given the ✏ informed in the figure.
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Figure 13: Filtering out features smaller than tile resolution: feature A is removed
since its width and height are smaller than the resolution.

This algorithm also works for spatiotemporal data such as trajectories. Since the
timestamp is associated with each vertex of the curve, when a point is removed
from the original geometry, its timestamp is also removed. However, there is a
downside to it. Imagine the first three vertices from left to right in Figure 14
has timestamps 0, 10 and 100, respectively. If we generate an animation with the
original curve, we see that such object moves faster between the first two points and
slower from the second to the third. But with the simplification, this behaviour will
be replaced by a slow movement between the first and third points. In other words,
the removal of intermediate vertices a↵ects the original speed behaviour when
interpolation is performed. Nonetheless, it’s possible to implement a modified
algorithm that considers not only the spatial deviation but also the temporal one,
with a second parameter for a temporal distance dimension.
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Figure 14: Ramer–Douglas–Peucker curve simplification algorithm

3.1.3 Clipping to Tile Boundaries

For each tile, we select only the data that are within its boundaries. Nevertheless,
there will be cases where the geometry intersects the tile, meaning that it can
have one or more segments inside the tile boundaries and one or more segments
outside the tile boundaries. The clipping process consists of clipping the original
geometry to remove all its content that is outside the tile boundaries, as illustrated
by Figure 7.
Take as an example the trajectory and tile boundaries represented in Figure 15a.

We can clip the geometry to the tile boundaries using the intersection overlay func-
tion commonly implemented in any geoprocessing tool or spatial database. The
resulting geometry will include all the vertices that were inside the tile boundaries
in addition to the points where there was an intersection between the trajectory
and the tile boundaries, highlighted in Figure 15b. Such additional points were
not part of the original trajectory and therefore has no vertex attributes associated
with, such as timestamps. Hence, for clipping spatiotemporal objects, we need an
extra step to compute the timestamp of these additional points. A straightforward
option is to compute it using spatiotemporal interpolation [30], considering the pre-
decessor and successor points. A bilinear interpolation, for example, computes the
timestamp preserving the original speed of the moving object.

3.1.4 Projecting to Screen Coordinates

Depending on the specifications of the vector tile format, the tiles have a specific
coordinate space, as explained in Section 2.3.1. Because of that, the data needs
to be projected into this coordinate system. Such projection only modifies the
object’s geometry coordinate values, which means that only the spatial component
of a spatiotemporal object will be modified.

3.1.5 Encoding Output

Depending on the vector tile standard, the vector tile needs to be encoded before
being outputted. MVT specification, for example, are encoded using Google’s
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(a) original geometry (b) clipped geometry

Figure 15: Clipping geometry to tile boundaries.

protocol bu↵ers (protobufs). It serialised the data into a .mvt binary format that is
returned to an application that decodes it and renders the tile. The current version
of MVT specification, 2.1, does not support spatiotemporal data, only geometries
and attributes associated with it, which can be of type string or numerical. An
alternative is to disassemble a spatiotemporal data type into the spatial and the
temporal components. The spatial component is encoded normally as geometry, as
already supported by the vector tile specification, while the temporal component
is encoded as an attribute of the geometry in a form of a string representing the
ordered list of timestamps comma separated. On the client-side, after decoding the
tile and before rendering, it is necessary to extract the timestamps from the list of
attributes and reassemble with the geometry to form the original spatiotemporal
object.

3.2 Tile Server Architecture

Using a tile server to visualise data is already a widespread solution in spatial
context. Well known GIS tools implement a data connector to consume vector tiles
on the fly by fetching data when it is about to be visible in the client’s viewport.
This strategy, as already explained in Section 2.3.1 results in better performance
for large volumes of data, since it promotes faster data transfer. The first solution
proposed follows the same strategy, but now applied to spatiotemporal data.
Figure 16 illustrates the overview of solution 1, which consists of a server side

and a client-side. The server side consists of the MOD, responsible for storing the
data and executing queries to filter, transform and aggregate the data, and the
tiler server, responsible for sending queries to the database to fetch the tiles. In
the client-side, we have a visualisation framework, which is the interface where the
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Figure 16: Solution architecture with tile server

user can conduct visual analytics. The data flow can be summarised as:

1. Given the current viewport and zoom level, visualisation framework sends a
request to tile server, informing the coordinates of the tile in z/x/y and data
source the tile will be computed from;

2. Tile server converts this request into a SQL query that is sent to the MOD,
if not cached already;

3. MOD returns the vector tile to the tile server

4. Tile server respond the visualisation framework’s request with the vector tile,
which will then be rendered in the client-side.

The advantage of dividing the architecture into server and client-side is that we
can improve the scalability of the solution. For example, we could use a distributed
database to handle high volumes of data, caching strategies to deliver faster re-
quests, and deploy both MOD and tile server to a high performance infrastructure
either on a bare-metal server or on a cloud service. This way, multiple users can
simultaneously conduct visual analytics on their personal computers, consuming
the same data source but fetching only the data that are valuable to them. Ad-
ditionally, users will not be limited by the specifications of the hardware they are
using.
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3.2.1 Visualisation Framework

The visualisation framework is the interface where the user will be able to conduct
the visual analytics. It is responsible for sending requests to the tile server to fetch
data tiles according to the viewport and zoom level, for creating the customisable
data visualisations, allowing users to interact with the data. It should also allow
the user to write queries to the database to fetch the specific data they need using
the operations provided by the MOD that allows filtering, transformation and ag-
gregation. The visualisation framework should be e↵ective but also easy to install,
easy to use, and capable of rendering high volumes of data. Hence, visualisation
frameworks based on Web Graphics Library (WebGL) are highly recommended,
since they take advantage of GPU-accelerated rendering which happens on the
web browser, meaning that no software installation is required.

3.2.2 Tile Server

Responsible for making the connection between what the user wants to visualise
and the data source, the tile server translates the tile requests made by the visu-
alisation framework into queries to SQL to be executed on the MOD. The tiles
are requested using the coordinate system z/x/y, which results in a MVT query
to the database and returned to the visualisation framework as an encoded vector
tile. Along with the tile coordinates, the user also needs to inform the source of
the data, which can simply be the name of the table in the database, or a selection
query. If a query is provided, the tile server is responsible to query the database
to create a view in the database and serve the tiles from such a view.

3.2.3 Moving Object Database

The MOD is responsible for storing the moving object data. It processes the tile
queries sent by the tile server and returns the vector tiles so it can be transmitted to
the visualisation framework to be visualised. The database should implement the
spatiotemporal vector tiling function and also allow data filtering, transformation
and aggregation operations.

3.3 In-Memory Tile Index

The previous solution architecture might meet all the requirements aforelisted.
However, depending on the network connection speed, on how big the data is
and therefore the size of the tiles, the latency from transferring each vector tile
from the MOD to the tile server and then to the visualisation framework might
be high, which would consequently fail to meet the requirement R3. In certain
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applications, where the interactivity with the visualisation needs to be as real time
as possible, the data transfer latency needs to be minimal. The second solution
proposed prioritises low latency (R3) at the expense of not being able to handle
large volumes of data (R1). It does not include a tile server, as illustrated by
Figure 17.

Figure 17: Solution architecture with in-memory tile index

The strategy of this solution consists of fetching all the data from the MOD,
loading it to the visualisation framework and generating the tiles on the fly on itself.
The tiles will be computed and saved into an in-memory tile index, meaning that
the tiles will not be transferred, instead will be stored in the client-side, where
the rendering step happens. Even though we achieve the minimal latency between
generating the tile and rendering it, this solution has a drawback: the volume of
the data is limited by the amount of memory available on the client-side. Since
the full data queried by the user is loaded into the visualisation framework, this
solution will not work for a large dataset that surpasses the memory capacity of
the user’s machine.
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4 Implementation and Experimental

Evaluation

In this chapter, we discuss the implementation of the solutions and the experimen-
tal study to evaluate their performance.

4.1 Implementation

In order to evaluate if the proposed architectures meet the expected requirements,
we implemented open-source prototypes that could be easily used in real-world
scenarios and collaboratively evolved by anyone interested in contributing to the
project.
We decided to use MobilityDB as the MOD, since it is an industrial-scale so-

lution, capable of dealing with high volumes of data with high performance, it is
compatible with the PostgreSQL ecosystem, compliant with OGC standards and
o↵ers a rich collection of functions for mobility analytics.
As mentioned in Section 2.3.2, PostGIS already implements functions to gener-

ate MVT tiles but is limited to geometry types. Given a geometry and the tile
boundaries, ST AsMVTGeom is responsible for simplifying, clipping and project-
ing the geometry into tile coordinates. The output of this function is then used
as an input by ST AsMVT function, to encode the geometry and other relevant
attributes into a binary MVT using protobuf format. We then implemented a sim-
ilar strategy in MobilityDB to deal with temporal geometries, such as tgeompoint,
which is the data type used to represent spatiotemporal trajectories.
Similarly to ST AsMVTGeom, we implemented AsMVTGeom in MobilityDB.

This function applies the operations as PostGIS’ implementation, but for a tgeom-
point data type input. Since MVT specifications do not support spatiotemporal
data, AsMVTGeom implements a spatiotemporal vector tiling strategy that re-
turns the vector tile geometry and list of timestamps disassembled. With this
approach, one can use PostGIS’ ST AsMVT function to encode the output of As-
MVTGeom, where the list of timestamps will be encoded as a string attribute of
the vector tile and will need to be decoded when received.
For the visualisation framework, we chose to work with two tools: Deck.gl1

1https://deck.gl/
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and Kepler.gl2. The first is a WebGL-powered visualisation framework for visual
exploratory large-scale data analysis. It implements an approach based on layers
that can be composed to build complex data visualisations. Users have access to a
catalogue of standard layers, or can build their own based on the requirements of
the project. Since Deck.gl supports WebGL, it provides fast processing with GPU-
accelerated parallel rendering, suitable for large datasets. Likewise, Kepler.gl is
a powerful open source geospatial analysis tool that uses WebGL to render large
datasets quickly and e�ciently in the web browser. It is actually built on top of
Deck.gl, taking advantage of all its capability and high performance, but giving
better support to users with drag and drop function to upload data and easy
interaction to add filters, aggregations and visual customisation to each layer.
Figure 18 illustrates the interface of Kepler.gl with an animated visualisation of
NYC taxi trips.

Figure 18: Kepler.gl interface with animated trips layer.

Ideally, Kepler.gl is a better alternative for our context than Deck.gl since it
provides creation and customisation of layers with an easy interface, without any
requirement of programming skills. But due to the complexity of the code, lack
of support from the community and time constraints, we could not implement in
Kepler.gl a layer capable of rendering spatiotemporal data (animation of trips)
from vector tiles. We implemented in Kepler.gl an interface so users could write
queries to the MOD to fetch the data, but so far we were only able to implement a

2https://kepler.gl/
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MVT spatiotemporal layer in Deck.gl, which does not compromise our performance
evaluation since both Kepler.gl and Deck.gl use the same rendering framework,
called luma.gl3. We implemented a custom layer on Deck.gl based on the existing
layers MVTLayer and TripsLayer that consumes spatiotemporal data from a MVT
server and generates an animated visualisation of the moving objects on a map.
This custom layer was used for the performance evaluation, but other layers could
be implemented in the future.
For the tile server, we chose pg tileserv4, a lightweight PostGIS tile server im-

plemented in Go. We modified pg tileserv so it can also work for MobilityDB’s
tgeompoint data type and, in this case, use the corresponding MobilityDB’s func-
tion AsMVTGeom. In order to implement the second architectural solution that
proposes the use of an in-memory tile index, we adopted an existing tool developed
by Mapbox named geojson-vt5. This is a JavaScript library that slices GeoJSON
data files into vector tiles on the fly, designed to handle large volumes exclusively
on the client-side, when there is no server. Since the tiles are computed and saved
in memory, it promotes fast data rendering and interaction, without the latency
of fetching tiles from a server. We modified geojson-vt so it can compute tiles for
spatiotemporal data: GeoJSON geometry object with a list of timestamps in its
property.

4.2 Dataset

In our experimental study, we decided to use a moving objects data generator so
we can evaluate the performance of our solution over di↵erent data sizes. Berlin-
MOD [10] is a benchmark developed to evaluate the performance of moving object
databases. It is based on a simulation scenario within the street network of Berlin
where the location of vehicles is monitored for a given period of time. The bench-
mark contains a set of queries, but also a dedicated data generator that generates
moving objects data so it can be easily executed for di↵erent data scales. In this
sense, BerlinMOD simulates an ordinary person’s behaviour of going from home
to work and vice versa during the weekdays with a personal vehicle, and sporadic
trips in the evening and weekend. The data generator has a scale factor parameter,
which determines the number of simulated vehicles and the number of days, which
is important for our experiment since it allows us to evaluate the impact that the
size of the data has on the performance of our solution. In this experiment, we
adopted 4 di↵erent sizes of data: small (S), with a scale factor of 0.005; medium
(M), with a scale factor of 0.05; large (L), with a scale factor of 0.2; and extra-large

3https://luma.gl/
4https://github.com/CrunchyData/pg tileserv
5https://github.com/mapbox/geojson-vt
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(XL), with a scale factor of 1. Table 1 lists the characteristics of each scale factor
used in this experiment.

size scale factor # days # vehicles # trips # points
S 0.005 2 141 1,797 346,657
M 0.05 6 447 15,045 2,998,674
L 0.2 13 894 62,510 12,091,785

XL 1.0 28 2000 292,940 56,129,943

Table 1: BerlinMOD data used in the experiments.

4.3 Experimental Setup

The experimental evaluation was conducted on a MacBook Pro 2020, with a 2
GHz Quad-Core i5 processor, 16 GB of RAM and 1.5 GB GPU. MobilityDB was
executed in a Docker container with 4 CPUs and memory of a maximum of 8.0 GB.
We used Google Chrome’s DevTools to obtain the statistics used for comparison
in the result discussion:

• Memory footprint: the amount of memory consumed by the web page, in
this case, Deck.gl’s application;

• Data transferred: the total sum of vector tile sizes transferred from the tile
server to the Deck.gl’s application;

• Load time: the amount of time needed to fetch and load the vector tiles into
Deck.gl’s application;

• frames per second (FPS): the rate that the animation of trajectories is re-
freshed on the display (ideally 30 fps or more, to guarantee smooth anima-
tion).

4.4 Results

We executed the experiment using Deck.gl as the visualisation framework, where
the metrics were extracted. Since the data was located in Berlin, Germany, we
centred the map at longitude 13.383406 and latitude 52.515338, with a zoom level
of 11.
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4.4.1 Evaluation of the Architecture with a Tile Server

Impact of MobilityDB’s redundant points filtering optimisation

As mentioned in Section 2.2.1, MobilityDB implements a strategy that eliminates
redundant observations of trajectories without compromising its nature. In this
experiment we evaluate what’s the impact of this strategy, comparing the number
of observations from the original file with the number of observations stored in
MobilityDB. Table 2 shows that the number of observations stored by MobilityDB
is between 1.2 and 1.8 times smaller than the original, which results in less space
consumed and faster query responses.

size original # points # points in MobilityDB
S 346,657 189,417
M 2,998,674 1,640,554
L 12,091,785 10,260,475

XL 56,129,943 31,120,134

Table 2: Di↵erence between the original and MobilityDB’s number of points.

Relationship between scale factor and load time

In this experiment, we measure how long it takes to request the vector tiles and
receive the response from the tile server, including the time to execute the query in
MobilityDB and the data transfer to the client. Figure 19 illustrates the result of
the experiment. For the scale factors of 0.005, the result took 7.64 seconds to load
completely, while for 0.05 it took 44.76 seconds. For scale factor 0.2, the vector tiles
took almost 8.8 minutes to be loaded into Deck.gl which is a very long time if we
consider that users will execute various queries during their exploratory analytics
process. For scale factor 1.0 we could not obtain results, since the hardware used
to execute the experiment did not have enough memory to compute the tiles.

Relationship between scale factor and volume of transferred data

In this experiment, we evaluate what is the volume of data transferred from the
tile server to Deck.gl’s application. This value gives us enough information to
understand the latency of transferring vector tiles in di↵erent scenarios, where
there is a limitation in the communication speed between the components of the
architecture. As shown in Figure 20, for scale factor 0.005 the total data transferred
was 44.4 MB, while for scale factor 0.05 it was 382 MB. As expected, for a large
number of points, represented by scale factor 0.2, the data transferred from the
tile server to Deck.gl’s application was around 2.2 GB, which explains the high
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Figure 19: Experimental results regarding load time.

loading time previously shown. We believe that this amount of data might not
be supported in real-world scenarios, where the client-side and server-side might
be in di↵erent machines, and therefore there will be a speed-limited connection
between both sides. Again, for scale factor 1.0 we could not obtain results, since
the hardware used to execute the experiment did not have enough memory to
compute the tiles. We can also observe that there is almost a linear correlation
between the number of points and the amount of data transferred, if we evaluate
the ratio number of points to data transferred. On average, 1 MB holds information
of 4408 points.

Relationship between scale factor and memory consumed

In this experiment, we measure the memory footprint of Deck.gl’s application for
each of the data sizes. Figure 21 shows the amount of memory consumed for
the scale factors 0.005, 0.05 and 0.2. For the latter, the memory consumed was
around 4.4 GB, which can possibly be considered a limit, since average personal
computers (client-side) will not have much more memory available than this. The
hardware used to execute the experiments was not able to handle the scale factor
of 1.0, since there was not enough memory to compute the tiles. Alternatively, we
could execute the experiment with more robust hardware, to push the limits of
the solution.
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Figure 20: Experimental results regarding volume of transferred data.

Impact of the level of details

In this experiment, we evaluate what is the impact of the level of details in the load
time, amount of transferred data and memory footprint. For that, we executed
the same scenarios as before but for zoom level 15, which requests smaller tiles
but with more level of details than zoom level 11. As shown by Figure 22, the
value of the three metrics decreases. This behaviour is expected since the viewport
does not include all trajectories included in a lower zoom level and therefore fewer
trajectories are fetched. However, the decrease is not proportional, which means
that the level of details is greater for a high zoom level, meaning that even though
not all trajectories are fetched, the ones that are have more points (they are less
simplified than the ones from low zoom levels), which is expected behaviour.

4.4.2 Evaluation of the Architecture with an In-Memory Tile

Index

We proposed a second architecture that instead of having a tile server to send
the tiles over to the client as the user interacts with the visualisation framework,
we create and store the tiles in-memory at the client-side. This way we avoid
the server-client data transfer and, therefore, eliminates its latency. The goal of
this solution is to provide a smoother interaction with the visualisation framework,
since the latency is visually noticeable when the user changes the viewport via zoom
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Figure 21: Experimental results regarding memory consumption.

or pan. Since there is no data transferred and the load time is inconsiderable, we
evaluate the FPS of the animation of trajectories.

Evaluation of frames per second

In this experiment created an animation of the trajectories with Deck.gl’s TripLayer,
as we did for the previous experiments. But instead of computing and sending each
vector tile to Deck.gl’s application, we load a file GeoJSON containing all trajecto-
ries in memory and use geojson-vt to compute the vector tiles on demand and save
them in memory. Figure 23 shows that for the same viewport and dataset, the
application’s FPS was around 30 fps for all scale factors, higher than the solution
with a tile server. We believe this happens for two reasons: (1) with tile server,
each tile is requested individually and can be received apart in time, which then
updates Deck.gl’s layer data and triggers a rendering update. With an in-memory
tile index, even though the requests are individual, they are shared by the same
data structure and therefore computed and rendered as a group, triggering only
one rendering update; (2) the MVT standard used by the tile server encodes the
timestamps as a comma-separated string, which needs to be decoded in Deck.gl,
while with geojson-vt the vector tiles are not encoded and therefore needs no
further processing to render the trajectories.
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(a) load time for di↵erent zoom levels

(b) transferred data for di↵erent zoom levels

(c) memory footprint for di↵erent zoom levels

Figure 22: Experimental results regarding the impact of level of details.
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Figure 23: Experimental results regarding frames per second of animation.
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5 Related Work

Previous work had solved only partially the problem of e�ciently conducting visual
analytics of large-scale full trajectory data from a MOD. Most of them proposed
stand-alone visualization tools that load input files and use their own in-memory
data structures, which is not scalable.
To our knowledge, [31] is the only work that explored visual analytics on a

MOD. They propose a solution that combines a visual analytics system named
V-Analytics [2] with SECONDO, an open source research prototype of MOD [16].
Both tools are integrated so that data can be exchanged between them in any
direction, in a way that SECONDO’s extensive set of query operations can be used
to query the data and send it over to V-Analytics which enables users to visually
interact with the data, preprocess, filter, select a subset of data for further analysis
and also send it back to SECONDO as a data source to execute more queries with
it.
The authors demonstrated the solution in a study case that aims to identify

aircraft spatiotemporal patterns. By analysing real Air Tra�c Control (ACT)
data, they used the proposed framework to identify two less desirable landing
patterns: (1) missed approach, when the aircraft is descending for landing and
the pilot decides to ascend again; (2) stepwise descent landing, when the aircraft
alternates between descent and cruise until it completely lands on the ground.
The motivation of the study of landing patterns is to help increase safety, decrease
fuel consumption, pollution and noise, and consequently improve air tra�c. The
dataset used in the study comprises one-day radar recording of aircraft positions
over France, consisting of 17,851 trajectories and 427,651 recorded positions.
Di↵erent from [31], our solution minimises the data transfer between the visu-

alisation framework and MOD. The data is only stored in the MOD and only
vector tiles are transferred to the visualisation framework to be rendered. The
user still has a chance to interact with the data, but any complex data transfor-
mation, other than for visualisation purposes, should be executed on the database
side via queries. With this approach, we avoid inconsistency between the data
living in both frameworks, decrease the volume of data transferred between the
components and therefore promote faster interaction and rendering. Additionally,
even though [31] do not make clear what are the limitations of their solution, our
implementation was able to handle a lot more simultaneous points than theirs did
in the study case with ACT data. Another advantage of our solution over [31] is
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that V-Analytics is a software that needs to be installed on the user’s computer,
while ours can be accessed via web browser without any previous installation.
[11] propose TaxiVis, a framework that allows users to visually query taxi trips.

It supports a wide range of spatiotemporal queries, such as filtering, aggregations
and origin-destination queries, and allows users to interactively pose queries over
all the dimensions of the data to explore attributes associated with taxi trips. To
promote high performance, TaxiVis implements e�cient data storage and the use
of adaptive level-of-detail rendering strategies to support interactive response times
and to be capable of rendering a large number of clutter-free graphical primitives on
a map. The authors proposed a system with its own storage manager, as opposed
to a traditional database, to index the taxi data, since it can answer queries faster
and has a smaller memory footprint than adopting SQLite or PostgreSQL.
However, TaxiVis is not suitable for full trajectory data, only the origin and

destination taxi trip points are considered, which is insu�cient to conduct moving
objects data analytics. On the other hand, our solution considers full trajectory
data. By implementing their own storage component, TaxiVis is limiting in the
sense that the user would have to transfer all taxi data to the tool and index it
before conducting any analysis, which depending on the size of the data it can
take hours. Contrastingly, our solution allows the use of any MOD so that all
data is stored in one place, avoiding consistency issues and redundancy. TaxiVis
implements a strategy of visual querying, which allows users to easily query data
interacting with the system. Even though it makes it possible for people with-
out any previous knowledge of SQL to conduct visual analytics, the number of
di↵erent operations one can execute is limited by what was implemented in the
tool. This means that if one operation that fit our needs is not available, we would
have to implement it by editing TaxiVis’ source code, which requires a lot more
programming knowledge than writing SQL queries. Finally, TaxiVis implements a
hard limit of 1 million in the number of points it can handle, which might not be
su�cient for certain big data scenarios, and it has no strategy to scale to surpass
such a hard limit, whereas the architecture of our solution can be easily scaled.
Other works focused on the visual analytics dimension, developing visual strate-

gies to interact with the data, but not focusing on how the data is stored nor
adopting MOD as a data source. For instance, [23] developed TrajectoryLenses,
an interaction technique to support complex filter expressions and the analysis of
spatiotemporal movement data. It adopts the concept of lenses, which is basically a
way of filtering data by location and/or time, which can be combined interactively
to create powerful spatiotemporal queries. Like TaxiVis, spatiotemporal data can
be explored in a purely visual and interactive way, instead of writing SQL-like
queries. The authors also include a study case to demonstrate the applicability
of TrajectoryLenses on a real-world scenario, exploring the usage behaviour of
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electric scooters in Stuttgart, Germany from a 2-year long dataset. In the same
sense, [5] propose TRAVIC, an interactive browser-based map visualization tool
that displays worldwide public transit vehicle movements. Both TrajectoryLenses
and TRAVIC focuses on the expressivity of visual analytics, and does not focus
on the technology to store, process and deliver the data to the visualisation client.
Many other works propose methods to e↵ectively analyse spatiotemporal data.

More specifically, in the context of mobility and transportation, [1] discuss the
state of the art in visual analytics. The authors survey a list of relevant work in
the field, that try to come up with forms of processing, aggregating and rendering
data to generate insights for di↵erent applications, such as taxi, public transporta-
tion, vehicle fleets, human mobility behaviours, tra�c modelling, forecasting, and
planning. However, none of the work included in the survey tackled the problem of
conducting visual analytics by adopting a MOD as a data source. They are most
focused on understanding questions, problems and opportunities from a specific
context and proposing solutions to those using visual analytics, not always from
the perspective of big data.
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6 Conclusion

This thesis tackled the problem of conducting visual analytics for big full-trajectory
data, by proposing a solution that combines a visualisation framework for large-
scale datasets and a Moving Objects Database. The goal of the solution is to
obtain better performance by pushing any data processing to the database side,
and only transferring to the client the necessary data to render the proposed data
visualisations. We achieve that by a spatiotemporal vector tiling strategy, which
splits the original data into equal size zoom-dependent tiles, which are stitched
together and rendered in the visualisation application. The spatiotemporal vec-
tor tiling strategy was implemented for two architectural solutions with di↵erent
purposes: one with a tile server, able to deal with a large amount of data that
does not fit in the client’s memory, and another with an in-memory tile index,
which eliminates the need to compute and transfer each tile to the visualisation
framework, providing faster rendering and smoother user interaction.
In our experimental evaluation we found out that, for modest hardware, our

solution can produce, with high performance, data visualisations of 15 thousand
trajectories with around 3 million observations, 7 times more points than [31] and 3
times more than [11], which the latter only considers origin and destination points,
while our solution considered the full trajectory. We also evaluated the trade-o↵
of building a solution capable of dealing with a high volume of data but sacrificing
the rendering speed and a solution that produces fast rendering but is limited by
the amount of memory available in the client’s machine.
While we present an advance in the field of visual analytics of large-scale mobil-

ity data, there are still many open problems and opportunities to provide better
performance, usability and ability to handle even larger volumes of data. We
highlight some important directions for further work in the following.

Pre-Computation and Indexing of Vector Tiles

One of the issues identified during the experimental evaluation is that depending
on the size of the dataset and the number of points that are included in a tile, there
is a latency to compute and transfer vector tiles to the visualisation framework.
One interesting direction for research is to come up with a method to pre-compute,
store and index vector tiles either in the database or pre-cache in the tile server, so
the latency to request and receive vector tiles are minimised and, therefore, provide
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a better experience for users to conduct visual analytics. To do so, one can come
up with an algorithm to identify what tiles are worth being pre-computed, via
popularity or density of points [13, 18].

Spatiotemporal Tile Slicing

Although we adapted a tiling strategy to deal with spatiotemporal data, the tiles
are sliced only by geographic location. For instance, imagine that we are visualising
the behaviour of buses throughout one week. In this scenario, a vector tile will
have the trajectories of all the buses that cross its boundaries during 7 days.
But depending on the visualisation, the animation of trajectories, for instance,
we could only fetch the first day, render it and keep fetching the other days on
demand. Therefore, there is a need for more research e↵orts that explore the idea
of creating temporal vector tiles, or vector cubes, that take into consideration the
time dimension in the slicing strategy in addition to the geographic location.

Architecture Scalability

The proposed architecture has some room for scaling. Even though we have not
conducted an experimental evaluation in a distributed environment, it would be
interesting to understand the impact of a distributed version of MobilityDB, the
adoption of caching strategies such as content delivery networks (CDNs) and the
deployment of both tile server and database to more robust hardware.

Integration with Kepler.gl

At the beginning we proposed to develop our implementation using Kepler.gl as
the technology for the visualisation framework. Due to time limitations, the com-
plexity of the code and lack of documentation, we opted to use Deck.gl. Even
though our solution was enough for conducting the experimental evaluation, Ke-
pler.gl is the right tool for easily conducting visual analytics, since it provides
an easy interface for uploading data, creating layers and customising rendering
attributes. Deck.gl, on the other hand, provides ways to create hardcoded data
visualisations, meaning that the user would need a certain experience with coding
to create di↵erent visualisations other than those available, which is not ideal.
However, Kepler.gl is an extension of Deck.gl and our open-source implementation
can be further developed into Kepler.gl layers.
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neural network based intelligent system for tile prefetching in web map
services. Expert Systems with Applications 40(10), 4096–4105 (2013),
https:

//www.sciencedirect.com/science/article/pii/S095741741300050X
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