
Distributed Mobility Data Management in
MobilityDB

Mohamed Bakli
Université libre de Bruxelles

Brussels, Belgium
mohamed.bakli@ulb.ac.be

Mahmoud Sakr
Université libre de Bruxelles

Brussels, Belgium
mahmoud.sakr@ulb.ac.be

Esteban Zimányi
Université libre de Bruxelles

Brussels, Belgium
ezimanyi@ulb.ac.be

Abstract—Mobility applications involve large amounts of data
that must be managed and queried in a scalable way. MobilityDB1

is an SQL moving object database system. It is an extension of
PostgreSQL and PostGIS that supports storing and querying
mobility data. This paper demonstrates the distributed query
management capabilities in MobilityDB using a cluster that
contains 2 billion real AIS ship trajectory points obtained from
the Danish Maritime Authority.

Index Terms—MobilityDB, Distributed Query Processing, AIS

I. INTRODUCTION

The amount of location tracks generated daily from sen-
sors, smart phones, and transportation systems is continuously
increasing. This requires a production-scale data manage-
ment system. Several extensions of distributed big data man-
agement platforms with trajectory analysis capabilities have
been proposed, such as UlTraMan [3], HadoopTrajectory [6],
and ST-Hadoop [4]. In the context of database systems, the
SECONDO research prototype has a distributed algebra [5]
that provides a procedural sharding and query distribution
functions.

MobilityDB [2] is a production-scale open-source moving
object database system that provides types and operations
for managing mobility data in PostgreSQL and PostGIS.
The types include temporal points, temporal floats, temporal
Booleans, etc. For instance, a temporal point may be used
to represent the evolution on time of the location of a car,
as reported by GPS devices. A temporal float would then be
used to represent its speed. MobilityDB has an extensive set
of spatiotemporal operations such as distance, temporal predi-
cates, range predicates, etc. In addition, the temporal types are
supported by index access methods that extend PostgreSQL
generalized search tree (GiST) and space partitioning search
tree (SP-GiST) indexes. The query interface is standard SQL
and hence, it is integrated with PostgreSQL query optimizer.

We have developed a distributed version of MobilityDB [1].
It is based on Citus2, an extension that horizontally scales
PostgreSQL across multiple machines using sharding and
replication. We demonstrate it here using a real scenario.

1https://github.com/ULB-CoDE-WIT/MobilityDB
2https://github.com/citusdata/citus

Fig. 1: Cluster architecture

II. DISTRIBUTED MOBILITYDB

As shown in Fig. 1, the distribution is performed in two
phases. In the preparation phase, the cluster is built and
the data is sharded and replicated over worker nodes. In
the query phase, the MobilityDB SQL queries are executed
using the Citus distributed planners. The coordinator nodes
distributes the data, creates distributed plans, and monitors
the execution of the worker nodes. The worker nodes store
data, execute queries, and generate local plans. All nodes
have the same stack that consists of PostgreSQL, PostGIS,
MobilityDB, and Citus. The big tables are distributed us-
ing the create_distributed_table function, which
expects a sharding key. The coordinator routes the tuples
to the worker nodes where they get physically stored. De-
scriptive information about the data shards is stored in the
PostgreSQL catalog on the coordinator node. This informa-
tion is used by the planner to distribute the queries. The
other small tables are replicated on the worker nodes using
create_reference_table.

III. DEMONSTRATION OVERVIEW

In the demonstration we execute a set of MobilityDB
queries in a distributed manner. We deploy Distributed Mo-
bilityDB on a cluster of 4 nodes. The cluster is loaded with a
real AIS ship dataset and will be accessed by using a VPN.
Queries will be issued via the PgAdmin client and will get
evaluated on the cluster.



A. Trajectory Dataset

The preloaded dataset contains ship trajectories obtained
from the Danish Maritime Authority website3. The source data
size is 500 GB. It has more than 2 billion spatiotemporal points
and 800K trajectories. The schema is as follows:
Ships(id:int, trip:tpoint, SOG:tfloat, COG:tfloat)
Ports(id:int, name:text, geom:geometry)

The Ships table is sharded using hash-partitioning, which
achieves load balancing. In addition, spatiotemporal GiST and
SP-GiST indexes are built on the trip attribute. The Ports
table is replicated on all workers.

B. Distributed Spatiotemporal Queries

We demonstrate Distributed MobilityDB using various SQL
queries4, for example:
Q1 Departure time of all ships in the port of Kalundborg in

Sept. 2, 2019 between 00:30 and 01:00 AM.
Q2 Number of one-way trips that ships did on Sept. 2, 2019

between the ports of Rødby and Puttgarden.
Q3 Trajectory and speed of the ships that spent more than 5

days to reach to the port of Kalundborg in Sept. 2019.
Q4 Total travelled distance of all trips between the ports of

Rdby and Puttgarden in Sept. 2019.
For example, Q1 above is given next:

1 SELECT T.ship_id, startTimestamp(atGeometry(T.trip,
P.port_geom)) AS DepartTime

2 FROM Ships T, Ports P
3 WHERE P.port_name=’Kalundborg’ AND T.Trip &&
4 STBOX(P.port_geom, period(’2019-01-02 00:30’,

’2019-01-02 01:00’))
5 AND intersects(T.Trip, P.port_geom);

This query finishes in 62 seconds on a cluster of 4 nodes.
It shows a co-located join between the distributed Ships
table and the replicated Ports table. The STBOX function
is used to construct a 3D bounding box using a geometry
and a period. The overlaps operator && checks the over-
lapping between the trip and the STBOX (Line 4). Then,
the intersects function checks whether a temporal point
has ever intersected a geometry (Line 5). The atGeometry
function is used to retrieve the part of the trajectory that
is inside the port geometry. Finally, the startTimestamp
function is used to get the departure time (Line 1). The query
plan generated by MobilityDB is as follows:

1 Custom Scan (Citus Real-Time)
2 Task Count: 32
3 Tasks Shown: One of 32
4 -> Task (Node: host=pgxl2 port=5432 dbname=ships)
5 -> Nested Loop
6 -> Seq Scan on ports_102046 p
7 -> Index Scan using ships_spgist_idx_102008

on ships_102008 t
8 Index Cond: ((trip && stbox(p.port_geom,

’[2019-01-02 00:30:00+00, 2019-01-02
01:00:00+00)’::period))

9 Filter: intersects(trip, p.port_geom)

3AIS Dataset: https://www.dma.dk/SikkerhedTilSoes/Sejladsinformation/
AIS/Sider/default.aspx

4The SQL queries are available at https://github.com/mbakli/
MobilityDB-AIS-Queries

(a) Query visualization in Franchise (b) Cluster management in Ganglia

Fig. 2: Query execution management

This query is distributed to 32 shards on the cluster nodes
by the Citus real-time planner (Lines 1-2). The number of
shards is equal to the number of cores that we have on the
cluster nodes. Each shard contains part of the data and the
query plan above represents one of the 32 plans (Lines 3-10).
The query first filters trips that were at that period in the port
of Kalundborg (Lines 7-9) using the && (overlaps) operator.
This operator uses the SP-GiST index to prune trips that do not
contribute to the results. The intersects function comes
at the end to check the intersection between the trip points
and the geometry of the port.

C. Demonstration Scenario

In the demonstration, the queries described in Section III-B
are executed. The query plan is shown using the PgAdmin
client. In addition, we visualize the results (i.e., trajectories
and regions) using an interactive visualization tool for Mobil-
ityDB based on Franchise as shown in Fig. 2a. Finally, we
will observe the query performance and resource utilization
of the cluster nodes using Ganglia5, a cluster management
application. It visualizes the load on the cluster nodes after
the query execution as shown in Fig. 2b.

ACKNOWLEDGMENTS

This work is done within the MobiPulse project, partially
funded by Innoviris, Brussels.

REFERENCES

[1] Mohamed Bakli, Mahmoud Sakr, and Esteban Zimányi. Distributed
moving object data management in MobilityDB. In Proceedings of
BigSpatial ’19, p. 1–10 (2019).

[2] Esteban Zimányi, Mahmoud Sakr, Arthur Lesuisse, and Mohamed
Bakli. MobilityDB: A Mainstream Moving Object Database System.
In Proceedings of SSTD 2019, p. 206–209 (2019).

[3] Xin Ding, Lu Chen, Yunjun Gao, Christian S. Jensen, Hujun Bao:
UlTraMan: A Unified Platform for Big Trajectory Data Management
and Analytics. PVLDB 11(7):787-799 (2018).

[4] Alarabi, L., Mokbel, M.F. & Musleh, M. ST-Hadoop: a MapReduce
framework for spatio-temporal data. Geoinformatica 22(4): 785–813
(2018).

[5] Thomas Behr and Ralf Güting. 2016. http://dna.fernuni-hagen.
de/secondo/files/Documentation/General/DistributedQuery/
ProcessinginSecondo.pdfDistributed Query Processing in Secondo.
Technical Report, FernUniversity Hagen. (2016).

[6] Bakli, M., Sakr, M. & Soliman, T.H.A. HadoopTrajectory: a Hadoop
spatiotemporal data processing extension. Journal of Geographical Sys-
tems 21(2), 211-235 (2019).

5http://ganglia.sourceforge.net/

https://www.dma.dk/SikkerhedTilSoes/Sejladsinformation/AIS/Sider/default.aspx
https://www.dma.dk/SikkerhedTilSoes/Sejladsinformation/AIS/Sider/default.aspx
https://github.com/mbakli/MobilityDB-AIS-Queries
https://github.com/mbakli/MobilityDB-AIS-Queries
http://dna.fernuni-hagen.de/secondo/files/Documentation/General/DistributedQuery/ProcessinginSecondo.pdf
http://dna.fernuni-hagen.de/secondo/files/Documentation/General/DistributedQuery/ProcessinginSecondo.pdf
http://dna.fernuni-hagen.de/secondo/files/Documentation/General/DistributedQuery/ProcessinginSecondo.pdf

