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ABSTRACT

This paper demonstrates the MobilityDB moving object database

system. It is an extensive implementation on top of PostgreSQL and

PostGIS with multiple novel aspects. MobilityDB defines multiple

spatiotemporal types for moving geometry and geography points,

as well as for temporal integers, reals, Booleans, and strings. It

also defines a rich set of operations on these types. The types are

supported with spatiotemporal index access methods by extending

GiST (Generalized Search Tree) and SP-GiST (Space Partitioning

GiST). The query interface is SQL. MobilityDB thus extends the

PostgreSQL optimizer with statistics collectors and selectivity esti-

mation functions. It is available as open source. The demonstration

includes a scenario with multiple queries, and a publicly accessible

query interface on the Web.
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1 INTRODUCTION

Moving objects are objects that change their value or location

with time. These can be vehicles, persons, animals, aircarft, the air

temperature of a city, the fuel price in a certain gas station, etc.

The ubiquity of tracking devices and IoT technologies has resulted

in collecting massive amounts of data that describe the temporal

evolution of such objects and values. This creates opportunities

to build applications on this data, which in turn calls for building
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a moving object database system (MOD). A MOD is a database

system that provides the functionality of storing and querying

moving object data via a query interface. Building a MOD requires

extending a database system vertically at all its levels: storage,

access methods, operations, SQL interface, and query optimization.

The long established research in moving object databases has

so far resulted in few research prototypes, e.g., SECONDO [3] and

HERMES [5]. However, an industry-scale implementation that can

be used in real-world applications is not yet available. MobilityDB

is envisioned to fill in this gap. It is built on top of PostgreSQL

and PostGIS, which are, respectively, a widely used open source

database system and its spatial database extension. These two sys-

tems are actively supported by a big community of companies and

individuals. Targeting both the academia and the open source com-

munities, we aim that MobilityDB become a mainstream MOD,

open for contributions from the experts in the two sides. The cur-

rent implementation is quite extensive as will be demonstrated next.

It is built as a PostgreSQL extension and consists of about 66,000

lines of C code, about 18,000 lines of SQL code to define the user

API, and about 31,000 lines of SQL code for testing.

2 GENERAL ARCHITECTURE

MobilityDB uses the abstract data type approach of MOD imple-

mentations [4]. In an extensible relational database system this

amounts to adding user-defined types that can be used as attribute

types inside relations. MobilityDB defines in PostgreSQL and Post-

GIS the temporal types: tgeompoint, tgeogpoint, tfloat, tint,

ttext, and tbool. These types encode functions from the time

domain to their corresponding base type domains. For instance,

the tgeompoint, tgeogpoint, and tfloat types encode, respec-

tively, functions from time to the base types geometry(point),

geography(point), and float1. At the abstract level, these tem-

poral functions can be of any order. At the representation level, a

discrete approximation must be chosen. MobilityDB implements

a novel discrete representation called the sequence representation.

Assume a sequence of input events, as illustrated in Figure 1, where

one event is a pair of a value of the base type and a time instant.

The sequence representation defines a piece-wise linear function

that interpolates the value between the consecutive timestamps of

the input events. It can also represent gaps in the definition time,

e.g., such as the gap between t5 and t6. Compared to the sliced

1These base types are provided by PostgreSQL and PostGIS.
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representation in [2], this representation achieves less storage and

faster execution of operations.

Sequence 
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Figure 1: Sequence representation

MobilityDB leverages PostgreSQL’s extensibility capabilities to

support the new data types. It also leverages the features of their

base types. For instance, time instants are time zone aware (a feature

by PostgreSQL), while tgeompoint and tgeogpoint use the spa-

tial framework provided by PostGIS. The same strategy is used for

implementing the operations. The goal is to maximize the compati-

bility between MobilityDB and its underlying platform, so that it

will benefit from the continuous development done by the commu-

nity, which supports the goal of a mainstream MOD. For instance,

PostgreSQL versions 9.6 and 10.1 came with new features that allow

parallel processing of queries. Most of the MobilityDB operations

that were already implemented before these versions, could make

use of the new parallelization, without requiring to change their

implementation. The next section explains how the different com-

ponents of MobilityDB use the extensibility aspects of PostgreSQL.

3 MOBILITYDB COMPONENTS

3.1 Temporal Types

The temporal types in MobilityDB are defined in accordance with

their base type and time type. As mentioned above the base types

are geography(point), geometry(point), float, int, text, and

bool. MobilityDB respectively defines the temporal types tgeogpoint,

tgeompoint, tfloat, tint, ttext, and tbool. Each of them rep-

resents a function from time to its base type. On the other hand,

the time type, that is used to represent the time dimension, can be

timestamp, timestampset, period, or periodset. When the time

type is timestamp, the temporal type represents a single pair of

a time instant and a value of the base type. When the time type

is timestampset, the temporal type represents a set of such pairs

with distinct time instants. When the time type is period, the tem-

poral type represents a continuous mapping between time instants

in the period and values of the base type. Finally when the time

type is periodset, the temporal type represents a set of such map-

pings with non-overlapping and non-adjacent time periods, e.g., as

illustrated in Figure 1.

The aforestated specification of the time type can be explicitly set

using type modifiers. This is a mechanism by PostgreSQL to special-

ize types into subtypes. For instance, tgeompoint(timestampset)

is the subtype of tgeompoint whose time type is a timestampset.

It represents a mapping from a set of discrete time instants into

geometry points. It can be used for instance to store the set of

check-ins of a foursquare user. This subtype does not interpolate

the coordinates between consecutive time instants. On the other

hand, the subtype tgeompoint(period) represents a continuous

trajectory, i.e., a mapping of the time instants inside the period to

geometry points that are interpolated. When no type modifier is

given during declaration, the attribute can accept any subtype. In

other words, the subtype will be automatically decided during the

value assignment (i.e., dynamic type binding).

Clearly, the time type periodset generalizes the other three time

types because a period set can have a single period and a period can

collapse into time instant. Therefore, formally, it is enough to define

subtypes for the periodset type modifier. While this is formally

true, in practice it is beneficial to explicitly define all the subtypes

for two reasons. The first is the efficiency of operations, since

the algorithms for certain subtypes can be more efficient than the

others. The second is the expressiveness, as the subtype declaration

represents constraints, that the user can explicitly specify in the

schema declaration (i.e., static type binding).

3.2 Operations on Temporal Types

MobilityDB implements over 2,300 operations on temporal types.

These functions and operators are polymorphic, that is, their argu-

ments may be of several types, and the result type may depend on

the types of the arguments. When more than one temporal argu-

ment are accepted by an operation, the result is only defined on

the intersection of their time spans. If the time spans are disjoint,

then the result is null.

The operations on base types that make sense for temporal types

are lifted [4]. The lifting transformation can be illustrated as:

(LIFT (op)(α , β))(t) = op(α(t), β(t))

where op denotes a static operation, LIFT(op) denotes its lifted

counterpart, and α , β are temporal arguments. The notations α(t)

denote the temporal functions of α , which yield its values at the

given time instant. A lifted operation hence returns a temporal value.

The snapshot of this temporal value at any given time instant is

equal to the evaluation of the corresponding static operation on

the snapshots of the temporal arguments at he same time instant.

For instance, the lifted predicate α > 0, where α here is a tfloat

value, yields a tbool that is true over all the time instants/periods

during which the value of α is positive, false during the rest of the

definition time of α , and undefined otherwise.

Another class of operations, are those that only make sense for

temporal arguments. These include:

trajectory(tgeompoint)→ geometry(line), min/max(tfloat)→ float
speed(tgeompoint)→ tfloat, atmin/atmax(tfloat)→ tfloat
cumulativeLength(tgeompoint)→ tfloat, length(tgeompoint)→ float

There are also operations to perform comparisons and arith-

metic over temporal types, to input and output temporal values, to

compute the distance, and to access the properties of the temporal

types. Finally, MobilityDB defines temporal aggregations such as

tmin(stream(tfloat)), which returns a tfloat that represents

at every time instant the minimum value of all the input. Similarly,

there are aggregate operations for temporal maximum, sum, and av-

erage for temporal integers and floats, as well as temporal centroid

for temporal geometry points.
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3.3 Indexing

MobilityDB extends the GiST and SP-GiST indexes provided by

PostgreSQL, so that they can work for the temporal types. The GiST

index implements an R-tree while the SP-GiST index implements

a quadtree. The storage type is always a bounding box where the

dimensionality depends on the type: 1D box (i.e., a period) for tbool

and ttext, 2D box (value and time) for tint and tfloat, 3D or 4D

box for tgeogpoint and tgeompoint depending on whether the

underling points are 2D or 3D points.

Since an SP-GiST index is a space-partitioning index, an entry

can exist in only one leaf node of the index. For this reason, we

transform the bounding boxes as points in a higher dimensional

space to avoid overlaps. For using a point to represent a box, we

basically concatenate the coordinates of the lower bound corner

w.r.t all dimensions and the coordinates of the upper bound corner.

The resulting point hence has double the dimensionality of the box

points, e.g., a 4D point to represent the minimum and the maximum

values of the 2-dimensional bounding box for the temporal types

tint and tfloat.

Our spatiotemporal indexes consider as many dimensions as

they are shared in the indexed column and in the query argument.

For example, a spatiotemporal index on a tgeompoint attribute

can be used to optimize an intersection predicate between this

attribute and a spatial region. The access functions of the index will

traverse the tree based on the spatial extent of the region argument,

without requiring a temporal extent. The aim of this polymorphic

behaviour of the index is to support a wider range of user queries

without the need to create multiple indexes (i.e., a spatiotemporal,

a spatial-only, and a temporal-only indexes). Clearly, a spatial-only

index on the spatial projection of the tgeompoint attribute will be

more efficient for such a predicate. Depending on the queries, users

need to choose between maintaining such a polymorphic index, or

multiple indexes.

3.4 Optimizer Statistics

The PostgreSQL planner estimates predicate selectivity in order

to choose the most efficient execution plans for queries, i.e., cost-

based optimization. It decides, for instance, whether to perform

index scans and on which tables, whether to parallelize the query

execution, and the order of computing the predicates. To this end,

it collects statistics about the contents of tables using the ANALYZE

command and stores them the pg_statistic catalog table. These

statistics include slots for predefined values such as the percentage

of nulls and the average size. They also include five generic slots for

type-specific statistics, each of which can accommodate an array.

The content of the five slots is decided by the developer of the

user-defined type. For large tables, a random sample of the table

contents is taken, rather than examining all rows. This enables

large tables to be analyzed in a small amount of time.

We base the statistics collected for temporal types on those col-

lected by PostgreSQL for scalar types, array types, and range types.

For scalar types, like float, the following statistics are collected:

(1) fraction of values that are NULL,

(2) value width in bytes (for variable-length types),

(3) number of distinct values in the column,

(4) an array of most common values together with an array of their

frequencies,

(5) histogram bounds of the values in the column, where the most

common values are excluded,

(6) correlation between physical row ordering and logical ordering.

For array types, like float[], in addition to the above, the following

statistics are collected:

(7) an array of most common elements together with an array of

their frequencies,

(8) a distinct element counts histogram.

For range types, like period, additional histograms are collected:

(9) a length histogram of all the non-empty ranges,

(10) a bounds histogram, which are actually two histograms of lower

and upper bounds.

For spatial types offered by PostGIS, like geometry(point):

(11) a grid of counts is collected, where a regular grid is constructed

to cover the layer extent. Every grid cell stores the number of

gemoetries that intersect its extent.

The statistics collected for temporal types are a combination of

the above statistics (1)ś(11) depending on their time type and base

type. In addition to statistics (1)ś(3) that are collected for all the

temporal values, the following statistics are collected.

• When the time type is timestamp, the statistics (4) and (5) are

collected for both the values and the timestamps.

• When the base type is discrete, like tint, the statistics (4) and

(5) are collected for the values and the statistics (9) and (10) are

collected for the periods.

• For tfloat with time type period or periodset, the statistics

(9) and (10) are collected for both the float ranges and the periods.

• For the spatiotemporal types tgeogpoint, tgeompoint, the sta-

tistics (9) and (10) are collected for the periods and the grid (11)

is collected for the spatial points.

Given a query predicate, and according to the attribute type, the

selectivity over the time dimension, and the selectivity over the

base type dimensions are estimated then multiplied. By this, we

make the assumption that these dimensions are non-correlated,

which is clearly a simplification that can be improved in the future.

Join predicate are waymore complex, and their selectivity functions

are not yet implemented in MobilityDB.

4 DEMONSTRATION SCENARIO

The demonstration focuses on the expressiveness of MobilityDB. A

set of representative queries based on the BerlinMOD benchmark

of moving object databases [1] will be presented. The benchmark

generates car trips in Berlin that simulate people movement for

home, work, and leisure. The table Cars stores static information

about the vehicles, while their spatiotemporal trips are stored in ta-

ble Trips. One car normally has multiple trips. Tables Points, Regions,

Instants, and Periods define locations and times used for expressing

query conditions with respect to the trips. The tables have indexes

on traditional, spatial, temporal, or spatiotemporal attributes. The

data generator is controlled by a scale factor to control the size of

the data in terms of the number of cars and simulation days.

The demonstration queries are:

(1) List the cars that have passed at a point from Points.
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(2) List the cars that were within a region from Regions during a

period from Periods

(3) List the pair of cars that were both located within a region from

Regions during a period from Periods.

(4) List the first time at which a car visited a point in Points.

(5) Compute how many cars were active at each period in Periods.

(6) For each region in Regions, give the window temporal count of

trips with a 10-minute interval.

(7) Count the number of trips that were active during each hour in

May 29, 2007.

(8) List the overall traveled distances of the cars during the periods

from Periods.

(9) List the minimum distance ever between each car and each

point from Points.

(10) List the minimum temporal distance between pairs of cars that

ever come closer than 100 meters to one another.

(11) List the nearest approach time, distance, and shortest line be-

tween each pair of trips.

(12) List when and where a pairs of cars have ever been at 10 m or

less from each other.

Here, as the space is limited, we only show Query (10):

1 SELECT T1.CarId AS Car1Id, T2.CarId AS Car2Id,

2 tmin( distance (T1.Trip , T2.Trip ) ) AS MinDistance

3 FROM Trips T1, Trips100 T2

4 WHERE T1.CarId < T2.CarId

5 AND tdwithin(T1.Trip, T2.Trip , 100.0) &= true

6 AND T1.Trip && expandSpatial(T2.Trip, 100)

7 GROUP BY T1.CarId, T2.CarId

The Trips100 table is a sample of 100 tuples from the Trips table.

This sampling is done to keep the runtime of the query suitable for

the demo. The query joins the Trips and the Trips100 tables. The first

join condition (line 4) is to ensure that the two trips are different,

and that their distance is computed only once. The tdwithin in

the second join condition (line 5) is a lifted predicate, yielding a

tbool result, which is true whenever the distance between its first

two arguments is within 100 meters, the third argument. The &=

predicate reads as ever equals. Here it checks whether the tbool

result of tdwithin has some true intervals/instants. The third join

condition (line 6) is an overlap predicate between the bounding box

of T1.Trip and the bounding box of T2.Trip expanded 100 meters

from every side. This predicate is index supported. It is added to

the query to trigger the optimizer to invoke the spatiotemporal

index defined on T1.Trip. Finally the query computes the temporal

distance between the filtered pairs of trips, and then computes

for every pair of cars, the temporal minimum aggregate of the

distances between their trips. This query finishes in 4.7 seconds

on scale factor 0.05 (15,045 trips), in 6.6 seconds on scale factor 0.2

(62,510 trips), and in 10.4 seconds on scale factor 1 (292,940 trips).

The execution plan that PostgreSQL generates for this query is:

1 GroupAggregate

2 Group Key: t1 . carid , t2 . carid

3 −> Sort

4 Sort Key: t1 . carid , t2 . carid Sort Method: quicksort

5 −> Nested Loop

6 −> Seq Scan on trips100 t2

7 −> Index Scan using trips_spgist_idx on trips t1

8 Index Cond: ( trip && expandspatial(t2 . trip , 100) )

9 Filter : (( carid < t2 . carid ) AND

10 ( tdwithin ( trip , t2 . trip , 100) &= true) )

The spatiotemporal index scan is indicated in lines 9,10. As ex-

plained above, and as indicated in line 10, it is triggered by the

bounding box overlap operator &&. The index scan result is then

joined with the Trips100 table using the other two predicates in

the query. Finally the groups are constructed, and the temporal

aggregation on every group is computed.

MobilityDB has been compared with SECONDO using these

BerlinMOD queries, on scale factors 0.005 (1.7k trip) up to scale

factor 1 (300k trips). In summary, MobilityDB came faster in 63% of

the queries. The total run time of all queries in MobilityDB required

13% of the time required in SECONDO.

Figure 2: MobilityDB DemoWebsite

As shown in Figure 2, we have created a web interface2 to write

queries and visualize query results on a database with the above

schema that contains the BerlinMOD benchmark data generated at

scale 0.005 (1797 trips). This interface is publicly accessible.
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