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Abstract
In this paper we model spatio-temporal data describing the fishing activities in the 
Northern Adriatic Sea over four years. We build, implement and analyze a database 
based on the fusion of two complementary data sources: trajectories from fishing ves-
sels (obtained from terrestrial Automatic Identification System, or AIS, data feed) and 
fish catch reports (i.e., the quantity and type of fish caught) of the main fishing market 
of the area. We present all the phases of the database creation, starting from the raw data 
and proceeding through data exploration, data cleaning, trajectory reconstruction and 
semantic enrichment. We implement the database by using MobilityDB, an open source 
geospatial trajectory data management and analysis platform. Subsequently, we perform 
various analyses on the resulting spatio-temporal database, with the goal of mapping the 
fishing activities on some key species, highlighting all the interesting information and 
inferring new knowledge that will be useful for fishery management. Furthermore, we 
investigate the use of machine learning methods for predicting the Catch Per Unit Effort 
(CPUE), an indicator of the fishing resources exploitation in order to drive specific pol-
icy design. A variety of prediction methods, taking as input the data in the database and 
environmental factors such as sea temperature, waves height and Clorophill-a, are put at 
work in order to assess their prediction ability in this field. To the best of our knowledge, 
our work represents the first attempt to integrate fishing ships trajectories derived from 
AIS data, environmental data and catch data for spatio-temporal prediction of CPUE – a 
challenging task.
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1 Introduction

The Northern Adriatic Sea area is one of the most exploited areas of the Mediterra-
nean Sea, causing an over-exploitation of the fish resources. Having a clear representa-
tion and understanding of the main factors driving such phenomenon is of paramount 
importance both for ecologists and for local policymakers. In fact, they could use such 
information for the development of effective fishery management plans, with the aim of 
making fishing activities sustainable and ensuring a productive and healthy ecosystem.

In this setting, we identify three main tasks that we address in the paper with the 
goal of improving the knowledge on the North Adriatic sea. The first task is to have a 
clear and sound representation of the fishing activities by defining and implementing a 
specific spatio-temporal database of the area of interest. The second task is to analyze 
the obtained database to gain a deep knowledge about the fishing activities in the North-
ern Adriatic basin, evaluate the effectiveness of the current fishery management, and 
detect the spatial distribution of commercial fishery catches. The third task is to inves-
tigate prediction methods for fishing activities forecast to drive specific policy design. 
This requires the ability to predict fish catches - a challenging task. Theoretically, if the 
sea was completely filled with fish, it would be sufficient to know the trajectory of the 
fishing vessel and the capacity of its fishing gear to estimate the catch. However, fish 
- grouped in schools - are distributed sparsely and unevenly. There is no dataset that 
will give us the location of the fish schools in a given basin. Fishers’ experience often 
tells them where the fish is likely to be at a given time, and therefore knowing a fish-
ing ship trajectory in a given area is a highly relevant data resource for estimating the 
likely quantity of fish in that area. There are, however, other factors relevant to the avail-
ability of fish, such as the biological and atmospheric conditions of the environment in 
which the fish live. In particular, clorophyll concentration and sea temperature seem to 
be important driving factors for fish availability [44, 51].

In our work we rely on three data sources: trajectories of fishing vessels obtained 
from AIS data, environmental data and fishing catch reports. We use such data to per-
form future catches prediction. While such data is unique today, we believe that as the 
fishing is being infused with information technology, such data will become common-
place, thus allowing for extensive applications of our analysis technique in the future.

Literature on the use of predictive methods to forecast fish catch in space and time is 
limited. Recent paper [46] is perhaps the closest to our work as it presents a correlative 
method to predict spatio-temporal presence of fish for small-scale fisheries using envi-
ronmental and VMS (Vessel Monitoring System) data. One significant difference with 
our work is that [46] uses VMS instead of AIS. VMS data have some limitations, such 
as long time between the transmission of two consecutive signals (low temporal resolu-
tion), as well as the difficulty to obtain data. Moreover, catch reports are not available in 
[46], so spatio-temporal catch prediction is not considered.

To accomplish the first task, namely the creation of a spatio-temporal database, we start 
from two complementary data sources covering four years, from January 2015 to Decem-
ber 2018. The first data source is the set of terrestrial Automatic Identification System 
(AIS) data, i.e., the AIS data sent by ships and received by ground stations on the Italian 
coast of Northern Adriatic sea. In particular, we focus on the AIS data of the fishing ves-
sels. The second data source is the fish catch reports of the Chioggia fish market, which is 
the primary market of the Northern Adriatic basin. Such reports contain the quantity and 
type of fish caught by all vessels selling their landings at the Chioggia fish market.
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We present all the phases of the database creation. First, trajectories are recon-
structed by linear interpolation of the raw AIS data: we clean the data and we detect 
the fishing vessels trips. As a second step the resulting trajectories are enriched with 
additional information concerning the activities and anomalies occurring during their 
trips. Finally, relying on the landing reports of the Chioggia fish market, we add a fur-
ther valuable semantic aspect to the trajectories, annotating each trajectory segment of 
the fishing vessel with the quantity of fish caught in that part of the fishing trip. In order 
to distribute the total catches during a given trip along the segments of the trajectory of 
that trip, we define two different approaches, which are put into action and compared 
through specific analyses. We first consider an approach based on a uniform distribu-
tion, i.e., the catch of each given species is uniformly distributed along the fishing seg-
ments of the corresponding trajectory. Concretely, each fishing segment is associated 
with a portion of the total amount of fish, proportional to its length. The uniform distri-
bution is clearly a simplification of reality. It is refined in a second approach which is 
based on a weighted distribution, whose underlying idea is that the areas where more 
vessels are fishing during a given time period are more likely to have higher catch rates, 
and thus catches are distributed in a way that privileges locations with a higher concen-
tration of vessels.

We also provide a prototype implementation of our spatio-temporal data-base using 
MobilityDB  [52], an open source geospatial trajectory data management and analysis 
platform, specifically developed to support the representation and the analysis of moving 
objects. On the one hand, the implementation in MobilityDB allows us to perform various 
analyses on the dataset and assess the appropriateness of the conceptual framework. On the 
other hand, it reveals the potentialities of MobilityDB for the reconstruction and manage-
ment of trajectories enriched with semantic information.

We use the implemented spatio-temporal database to accomplish the second task, that 
is, gaining knowledge about the fishing activities in the Northern Adriatic sea. First, we 
check the AIS coverage to detect areas where there are transmission problems. Then, we 
map the fishing activities of some key species, highlighting all the interesting informa-
tion and inferring new knowledge that will be useful for fishery management. The analy-
ses show that spatializing the distribution of catches allows one to single out the fishing 
grounds and their seasonal and annual variation. This can be useful for explaining the fish-
ers’ behavior and better understanding the seasonal migration of the target species.

Finally, to address the third task, the spatio-temporal database and some relevant envi-
ronmental data are used to explore a variety of prediction methods to forecast the so called 
Catch per Unit Effort (CPUE), an indicator intended to quantify the exploitation of fishing 
resources. Similar data have been used in [1] to develop early results on the use of machine 
learning techniques to predict the future CPUE from the past data. The work in [1], how-
ever, had some limitations, mainly related to the short temporal horizon – only two years, 
2015 and 2016 – of the landing and AIS data. This, in fact, turned out to be a serious 
problem for the application of prediction methods: using the first year for training and the 
second one for testing, was not sufficient to assemble a robust model. The novel database 
that originates from the present work, thanks to the availability of the data sources for two 
additional years, significantly improves the results and helps in exploring the prediction of 
CPUE further.

In summary, the contributions of this work are the following:

– We examine and integrate two complementary data sources, i.e., terrestrial AIS data 
and fish catch reports data. We also incorporate environmental information. Thanks 
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to such data we reconstruct multiple aspect trajectories and we employ MobilityDB to 
create a spatio-temporal database of the Northern Adriatic Sea.

– We analyze the obtained database in order to extract useful information about AIS cov-
erage and to detect the spatial distribution of target commercial species.

– We conduct an in-depth experimental analysis of a broad range of predictive models 
to predict CPUE and evaluate their performance using several measures. To the best 
of our knowledge, no work in the literature uses a combination of AIS, domain knowl-
edge for fishing activity, fishing catch reports, and environmental variables to forecast 
CPUE.

The paper is organised as follows: Section  2 discusses some related works, Section  3 
describes the trajectory reconstruction and enrichment and the creation of a spatio-tem-
poral database by means of MobilityDB. Section  4 reports and illustrates the results of 
some specific analyses performed with MobilityDB on the obtained database. Section  5 
describes the machine learning methods and the corresponding predictive model results. 
Finally, we draw some concluding remarks in Section 6. This is an extended version of the 
workshop paper [39].

2  Related work

In this section, we discuss some related work regarding (i) the integration of sea data with 
heterogeneous sources and the creation of semantic trajectories; and (ii) fishing activities 
forecast, which is the final goal of our predictive model.

2.1  Data fusion of sea data and semantic trajectories

Handling the fusion of ship movements with contextual and semantic information in the 
maritime domain is a recognized challenge [12, 35]. Several strategies were proposed to 
properly deal with the fusion of heterogeneous ocean data. For example, the papers  [13, 
43] show a platform in the maritime vessel traffic domain for discovering real-time traffic 
alerts by querying and reasoning across numerous streams (e.g., AIS, weather, ice, etc.). 
The authors use semantic web technologies to integrate heterogeneous data sources. In [8], 
the authors propose a model for the integration and analysis of data for vessel movement in 
a real-time maritime situation awareness system, also using semantic web techniques and 
tools. They introduce an ontology to model the maritime domain and to provide a common 
view on the different data sources. In particular, they define a movement ontology in which 
each position of a trajectory is modeled as being a move or a stop and they enrich trajecto-
ries also with information coming from the linked open data cloud, such as GeoNames1 or 
DBPedia2 or OpenStreetMap3. The queries are posed by using SPARQL and the ontology-
based data access system Ontop and its extension Ontop-spatial are employed to map the 
relational data to the ontology and to translate queries to SQL queries. This approach has 
been proved worthwhile to detect routine traffic of vessels and abnormal vessel behaviour. 

1 http:// geona mes. org
2 http:// dbped ia. org
3 http:// opens treet map. org
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In [49] a Semantic Model of Ship Behavior (SMSB) is proposed to represent and reason 
on the meaning of the behaviors. Their steps include building a semantic network based 
on maritime traffic rules and detection methods to identify basic ship behaviors in various 
maritime scenes (e.g., dock, anchorage, traffic lane, etc), and a dynamic Bayesian network 
(DBN) to reason about potential ship behaviors. Their results show that basic behaviors 
and potential behaviors in all typical scenes of any harbor can be obtained accurately and 
expressed conveniently using SMSB. In [41] a framework named SPARTAN is presented. 
SPARTAN allows for real-time semantic integration of big mobility data with other data 
sources, aiming at providing enriched trajectories which are exploited by higher-level anal-
ysis tasks. The design and implementation of SPARTAN use well-known big data tech-
nologies (Apache Flink and Kafka), and their experimental evaluation shows the efficiency 
and scalability of the framework using maritime and aviation data.

All aforementioned papers use specific semantic models that are focused on the data 
integration component for detecting anomalies  [8, 43], discovering spatio-temporal links 
between entities  [41], or finding particular behaviors at harbours  [49]. Other more gen-
eral semantic models are stops and moves [33], CONSTANT [5] and MASTER [29]. They 
have been proposed as general approaches that can be applied to any application domain 
involving moving objects. Several concepts of our application cannot be modeled simply 
and directly as stops and moves patterns (e.g., ship entering or leaving a port to perform 
fishing activities or the association of environmental variables with a given pattern). The 
CONSTANT model is limited to a subset of aspects related to subtrajectories or the entire 
trajectory (e.g., activities performed by the object, the means of transportation, the visited 
POIs, the trip’s goal, and some behavior-specific patterns).

We have chosen the MASTER model since it is more flexible and expressive and allows 
for the representation of heterogeneous features, ranging from simple labels to complex 
objects. In particular, it introduces the novel concept of aspect which consists of “a real-
world fact that is relevant for the trajectory data analysis” [29]. Different kinds of aspects 
are modeled: (i) volatile aspects, usually associated with the trajectory points, since they 
vary during the object movement; (ii) long-term aspects, which do not change during an 
entire trajectory, and hence they are associated with the whole trajectory; (iii) permanent 
aspects holding during the whole life of an object, thus they are connected to the moving 
object and not to the trajectory. Based on this notion, a multiple aspect trajectory is defined 
as a sequence of spatio-temporal points of a moving object with a (possibly empty) set of 
long-term aspects. Each point can have a set of volatile aspects and the moving object can 
be related to a set of permanent aspects. It is important to highlight that our modeling is 
an instance of MASTER, so we followed its recommendations in the design and created 
a concrete implementation of it for a particular goal: integrating AIS, fish catch reports 
and environmental variables to represent, analyze and predict the fishing activities in the 
Northen Adriatic basin.

2.2  Fishing activities forecast

The literature on fishing activities forecast is broad and can be decomposed in several ways. 
From a fishing management view, works like [32] propose a seasonal forecast system that com-
bines environmental and fish habitat data (e.g., collected by fish tagging) to predict tuna distri-
bution. The authors in [31] integrate satellite data and statistical models output to examine the 
relationship between sea surface temperature and chlorophyll-a concentration. They also define 
simple methods to forecast potential fishing grounds. The work of [14] tries to forecast 1-month 
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catches considering only the anchovy catches in past months as inputs. In [25, 26] the authors 
use complementary data such as landings, auction prices, regulatory data and AIS, to assess the 
spatio-temporal distribution and intensity of fishing activity. The focus is on mapping dredge 
gear fishing grounds using fishing intensity estimates based on AIS data. The fishing/not fish-
ing activity is inferred using the vessels speed. Similarly to [32] and [31], we use environmental 
data (e.g., chlorophyll-a and sea surface temperature) to predict fish distributions. Also, similarly 
to [14] we use fish catch information to predict future catches. The objectives of the works [25, 
26] are related to ours but are not the same. The predicted variable in [25, 26] is different since 
they try to assess the spatio-temporal distribution and intensity of fishing activity while our work 
is focused on predicting Catch Per Unit Effort (CPUE). Besides, the dataset used in our work is 
several orders of magnitude larger, we consider several environmental variables, and we explore 
a wide range of machine learning models to forecast CPUE. Unlike all of them, we are the first 
to use wave height as an environmental variable in our model.

From a viewpoint that considers the geolocation technology used to track ships, some works 
use Vessel Monitoring System (VMS) [27], satellite images [31] or AIS [15, 17, 45, 48]. Most of 
these works focus on training models to forecast when a vessel performs a fishing activity. Differ-
ent types of fishing ships (e.g., long-liners, purse-seiners, etc.) have different movement patterns. 
Predicting these patterns depends on the training data given to the machine learning model [45], 
or the domain specialist’s ability to create rules that reflect these patterns [30]. In this work we use 
domain knowledge from specialists to determine the activity of vessels (e.g., fishing or not) on 
their trajectory segments. Based on the knowledge of ranges of fishing speed for different types of 
fishing gears (e.g., trawlers, long-liners, etc.), we encode the specific rules to detect vessel activi-
ties. By exploiting this information, we can compute in a very accurate way the area swept by ves-
sels while fishing, thus allowing for a more realistic estimate of fishing effort and CPUE.

From the viewpoint of the analysis of models for time-series forecasting, many studies used 
the Autoregressive Integrated Moving Average (ARIMA), e.g., [4, 22, 28, 38, 50], and the 
Seasonal version (SARIMA), e.g., [3, 37] to forecast fish landings but without considering 
the spatial distribution of the resources. Authors in [44] integrated chlorophyll concentration, 
derived from remote sensing satellite, and sea surface temperature images to generate a fishery 
forecast. Recently, authors in [51] applied a model technique for optimal fishing, by using fish-
ing location data, chlorophyll-a and sea surface temperature, to forecast the spatio-temporal 
distribution of the Indian mackerel. Also, in [46] a correlative modelling approach, combining 
VMS and environmental variables, was used to identify potential fishing grounds of small-
scale fishery. Finally, authors in [16] applied statistical and process-based models to predict 
the changes in fish abundance and distribution correlated to climate change.

Summing up, the works discussed in this section may have used similar techniques, but 
most were applied for a different goal or used fewer environmental variables when compared 
to our work. To the best of our knowledge, no work in the literature uses a combination of 
AIS, domain knowledge for fishing activity, fishing catch reports, and environmental variables 
to forecast CPUE. Besides, this work tests a wide range of machine learning models on a 
larger scale (i.e., over 4 years).

3  Multiple aspect trajectories

In this section we illustrate the steps we followed to produce a spatio-temporal data-
base of fishing vessels trajectories in the Northern Adriatic sea, enriched with landing 
data from the Chioggia market. We start by describing the data sources (Section 3.1) of 
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our case study, that is, the terrestrial AIS data of the Northern Adriatic sea, the land-
ing reports of the Chioggia fish market, and the environmental data. Next, we explain 
how trajectories can be reconstructed by linear interpolation of the raw AIS data (Sec-
tion 3.2). In this step, we clean the data, we detect the trips performed by the fishing 
vessels and we enrich the resulting trajectories with additional information concerning 
the activities occurring during the trips. Then we illustrate how to assign landing reports 
to trajectories (Section 3.3) and we formalise the two different techniques to distribute 
the fish catches along the trajectories and we define how the fishing effort and the catch 
per unit effort (CPUE) are computed (Section 3.4).

The overall view of the process is depicted in Fig. 1: starting from the raw terrestrial 
AIS data of the fishing vessels and from the landing reports (amounts of fish by species, 
caught by a given ship in a single trip) of the Chioggia’s market, we build up on top of 
MobilityDB a spatio-temporal database of multiple aspect trajectories that enables us to 
perform analyses on the spatio-temporal and semantic features of the trajectories. More-
over, we use environmental information, i.e., sea temperature, chlorophyll-a, and wave 

Fig. 1  Overview of the process consisting of four main steps: data sources, reconstruction and enrichment 
of trajectories, data analysis and machine learning-based estimation

557GeoInformatica (2022) 26:551–579



1 3

height, to enrich the spatial grid we employ to partition the study area and these data are 
given as input to the predictive model presented in Section 5.

3.1  Data sources

3.1.1  Automatic identification system (AIS)

 AIS raw data, provided by the Italian Coast Guard, were obtained for the trawl fishing ves-
sels operating in the Northern Adriatic Sea from January 2015 until December 2018. The 
covered area is about 1.5 million km2 . Figure 2 shows a map of the North Adriatic Sea.

A total of 70 (2015), 77 (2016), 82 (2017) and 81 (2018) trawlers, with a length overall 
above 15m and operating from the Port of Chioggia (45.219643; 12.278885), were taken 
into consideration in this study: in particular, small and large bottom otter trawl (SOTB and 
LOTB), Rapido, one specific kind of beam trawl (RAP), and midwater pair trawl (PTM). 
The identification of the vessels was performed by matching the data present in the AIS 
(MMSI code, vessel name and the call sign) with those of the European Fleet Register, 
which supplies specific information on the vessels (i.e., primary and secondary gear, length 
overall, gross tonnage, etc.). All the data given by the AIS (i.e., data position, speed, time, 
MMSI) were used to identify the fishing tracks and analyze the fishing activities (fishing, 
not fishing).

3.1.2  Daily landing reports

 Landing dataset was obtained from the Chioggia’s Fish Market, whose harbor hosts one 
of the main fishery fleets of the Adriatic Sea. This dataset consists of daily landings (catch 
amounts in kilogram) for 104 commercial species caught during four years, from January 
2015 to December 2018 in the Northern Adriatic Sea. The records pertain around 80 fish-
ing vessels, and contains a total of 278078 transactions over the four years, as detailed in 
Table 1.

Fig. 2  Map of the North Adriatic 
Sea
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3.1.3  Environmental data

 We also incorporated daily measures of sea temperature (in kelvin), chlorophyll-a (in 
mg∕m3 ), and wave height (in meters) over the same four years considered. Data have been 
taken from Copernicus4.

The sea surface temperature and the chlorophyll-a influence the species distribution, 
while the wave height affects the fishers behavior. Hence, adding such semantic informa-
tion could be relevant for a more accurate prediction of the CPUE indicator. Moreover, the 
utilization of the sea surface temperature can be helpful to evaluate the effect of climate 
changes on fishing activities, a hot topic to be considered.

3.2  Trajectory reconstruction and enrichment

Since boat positions are recorded every 10-20 seconds, that correspond to a small spatial 
displacement of the boat, trajectories are reconstructed by linear interpolation of the raw 
AIS data. While performing the reconstruction raw data are cleaned: all the points imply-
ing movements that are not physically feasible due to a maximum possible boat speed are 
removed. In case positions are recorded less frequently, it is possible to use other interpola-
tion techniques following an approach similar to the one adopted by the authors of [24] to 
deal with sparse AIS data (Lagrange interpolation) or other state-of-the-art interpolation 
methods like the one described in [20]. Next, in order to organize the data into distinct tra-
jectories followed by the fishing boats, we apply two criteria: a new trip begins a) when the 
vessel is inside a port area and there is no transmission for longer than a fixed time, or b) 
there is an AIS datum outside a port area and the immediate previous AIS datum is inside 
a port area and the time period between the two AIS data is greater than 20 minutes. The 
first condition corresponds to the fact that the vessel ends a trip, it switches off the AIS, 
it is docked at the port and after a while it starts a new trip. The second one corresponds 
to a situation in which a vessel leaves out of the port and then it starts transmitting when 
it is outside the port (20 minutes is the minimum time a vessel takes to leave the port). A 
detailed analysis reveals that some fishing vessels, after entering the port area at the end 
of a trip, continue to transmit their position. In this way, none of the above criteria is met. 
This causes a wrong trip reconstruction in which two or more trips are considered as a 
unique trip with a duration of several days. Hence, to avoid this phenomena we remove the 
AIS data transmitted inside the port when the vessel returns to a port. In Table 2 we report 
the dimension of the original AIS datasets and the resulting number of trajectories.

Once the reconstruction is carried out, the trajectory is a sequence of segments obtained 
by connecting consecutive AIS points. Each trajectory contains the following informa-
tion: MMSI or boat identifier, trip duration (in hours), trip length (in meters), total time 
of fishing activity (in hours), total length of the fishing activity (in meters), date and time 

Table 1  Dimension of the 
landing report dataset over a time 
series of 4 years

Year No. of vessels No. of transactions

2015 71 64,180
2016 79 70,017
2017 80 71,716
2018 76 72,165

4 https:// www. coper nicus. eu/ en
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of the trip departure and conclusion, total number of segments with more than 30 minutes 
between two consecutive AIS transmissions, and the attribute anomaly, a code specifying 
whether the trip presents an anomaly or not and the kind of anomaly.

The last attribute highlights some strange behaviour of the fishing vessel. Possible 
anomalies are: the time interval between two consecutive AIS data is longer than 30 min-
utes outside the port, suggesting some points could be missing (anomaly is set to 1); a boat 
remains inside a port area for the whole trip (anomaly is set to 2); the duration of the trip 
exceeds the 24 hours (anomaly is set to 3). If none of the above cases occurs, the trip is 
considered as normal and anomaly is set to 0.

It is worth noting that through the MMSI, we can obtain further information on the vessel, 
such as its name, the fishing gear, the length overall. Each segment in the trajectory is in turn 
annotated with: speed, position of the segment with respect to the port areas, activity of the 
boat within the segment, length of the segment, time spent in the segment and transmission.

The activity attribute describes what the vessel is doing: 0 the vessel is in the port, 1 
means exiting from the port, 2 is about entering to port, 3 is about fishing and 4 corre-
sponds to navigation. The in port, exiting from port and entering to port situations can be 
deduced from the position of the extremes of the segment w.r.t. the port area. If none of 
the previous cases applies, the fishing or navigation activities are established on the basis 
of the average speed of the boat. More precisely, if the average speed is in the range of the 
fishing speed of the gear the boat is equipped with, the boat is assumed to be in a fishing 
phase; otherwise, it is assumed to be in a navigation phase. The considered gears and their 
minimum and maximum speed during the fishing activity are reported in Table 3.

The attribute transmission records whether the end points of the segment have a time 
distance greater than 30 minutes. If this happens the attribute is set to 1, otherwise to 0. As 
explained above, the presence of segments with transmission set to 1 allows for the detec-
tion of an anomalous behaviour of the trajectory.

These trajectories are modeled as a multiple aspect trajectory, following MASTER 
model [29]. Actually, as minimum granularity to attach semantic information, we do not con-
sider a single spatio-temporal point as in the original MASTER model, but segments. This is 
motivated by the fact that we want to highlight the presence of homogeneous trajectory por-
tions, which are the appropriate granularity level for our analyses. According to the MASTER 
model classification, the information listed above can be classified as long-term aspects, (those 
associated with the full trajectory), volatile aspects (those associated with the segments) and 
permanent aspects (those associated with the fishing vessel, derived from the MMSI).

Table 3  Gears and their 
minimum and maximum fishing 
speed (in km/h)

ID Gear description Min speed Max speed

SOTB Small bottom otter trawl 3.704 8.334
LOTB Large bottom otter trawl 3.704 8.334
PTM Pelagic pair trawl 3.704 10.186
RAP Rapido 7.408 12.964

Table 2  Raw AIS data vs 
trajectories

Year No. of vessels AIS data No. of trajectories

2015 70 29,757,601 11,280
2016 77 38,519,864 11,130
2017 82 21,247,207 35,335
2018 81 25,098,120 9,549
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By using the MASTER model we are able to represent different aspects of our trajecto-
ries in a uniform and simple way. Moreover, this representation allows us to perform com-
plex queries merging spatial, temporal and semantic features. In the rest of the paper, we 
denote by T the resulting set of multiple aspect trajectories.

3.3  Catch distribution

We next describe how to merge the trajectories of the fishing vessels with the daily land-
ing reports provided by the Chioggia fish market. The latter dataset contains information 
about each trading transaction, including the landing date, MMSI of the seller, the species, 
and the quantity of fish. Note that we work on a subset of the set of reconstructed multiple 
aspect trajectories. In fact, we exclude from our analysis, fishing vessels that do not sell 
their fish in Chioggia, trajectories that do not leave the port area, and trajectories that do 
not have any fishing activity. In order to perform the merge we need to associate each fish 
market transaction with a trajectory of the vessel having the specified MMSI. To accom-
plish this task, for each transaction, we select the vessel trip with the most recent arrival in 
the port (before 4 PM of the landing date). Arrivals after 4 PM are associated with transac-
tions occurring the next day. The quantity (weight) of fish assigned to a trajectory is called 
a catch.

To distribute the fish associated with a trajectory over the trajectory’s fishing segments 
we follow two different approaches: (1) uniform distribution, and (2) weighted distribution.

In the first case, the catch is uniformly distributed along the fishing segments of the cor-
responding trajectory. Each fishing segment of the trajectory is associated with a fraction 
of the total amount of fish, proportional to its length. We consider separately each species 
that the fishing vessel caught.

Definition 1 (Uniform distribution) Let tr be a trajectory and let catch the record con-
taining the quantities of the different species associated with the trajectory tr. Given a seg-
ment s belonging to tr with activity set as fishing and a species sp, the uniform catch for 
segment s and species sp is defined as

where tr.len_fishing is the attribute storing the total length of the fishing activity for the 
trajectory tr; s.len is the length of the segment; catch.sp selects the quantity of a certain 
species sp.

Clearly the assumption of uniform catch distribution is a simplification of reality. 
We consider also a refinement based on a so called weighted distribution. The idea 
is that the areas where more vessels are fishing, during a given time period, are more 
likely to have higher catch rates. In order to implement this technique, we need to suit-
ably partition the fishing area of interest because it becomes crucial to evaluate the 
number of fishing vessels present in a certain zone. We will use a square grid whose 
size will be influenced by two elements. On the one hand, it must take into account 
the dimension of the fishing vessels and their behaviour during the fishing activity, a 
knowledge provided by the environmental scientists. On the other hand, it will depend 
on the kind of analysis to be performed: generally speaking it should be large enough 
to include an amount of data adequate for the analysis.

(1)dU(s, sp) =
s.len

tr.len_fishing
∗ catch.sp
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The introduction of the grid leads to a further segmentation of the trajectories. In 
fact, each segment that spatially crosses one or more cells of the grid needs to be split 
into smaller segments in such a way that each portion is completely inside a single 
cell. Moreover, since we deal with a spatio-temporal grid, all segments spanning over 
two days are split into two smaller segments by taking as extra point the interpolated 
position at midnight.

In order to compute the weighted distribution, we associate a coefficient with each 
spatio-temporal cell of the grid.

Definition 2 (Fishing Coefficient) Let c be a spatio-temporal cell and sp a species. The 
fishing coefficient of cell c for the species sp is defined as follows:

where T ↓ sp is the set of trajectories having a landing report with the species sp; tr ∩ c 
returns the intersection between the trajectory tr and the cell c; s.activity and s.len are 
respectively the attributes of segment s storing the activity and the length of the segment.

The coefficient �(c, sp) combines the number of fishing vessels and the amount of 
fishing activity they perform in the cell, hence it provides a measure of the fishing 
activity in the cell. Note that the coefficient depends on the species. Hence, for each 
species sp, we select only the trajectories having a landing report for the given species 
sp.

Since it is natural to expect that vessels will mostly concentrate in fishy areas, the 
intuition is that cells where the fishing coefficient is higher will have higher catch 
rates. This leads to the idea, formalised below, of using such coefficient as a weight 
when distributing catches over a trajectory.

Definition 3 (Weighted distribution) Let tr be a trajectory and let catch the record con-
taining the quantities of the different species associated with the trajectory tr. Given a seg-
ment s belonging to tr with activity set as fishing and a species sp, the weighted catch for 
segment s and species sp is defined as

where s.cell is the unique cell the segment s belongs to.

When distributing the catch over the segments of the trajectory tr, again only seg-
ments which are classified as fishing are considered. The difference is that in this case 
each segment s receives a weight which is proportional not only to the length s.len 
of the segment but also to the fishing coefficient �(s.cell, sp) of the cell the segment 
belongs to.

3.4  Computation of the fishing effort over the grid

After the creation of the multiple aspect trajectories, we proceed with the computation 
of the fishing effort, an essential indicator for monitoring the fishing pressure on an area 
of interest over time. As mentioned above, we partition the Northern Adriatic Sea into a 

(2)�(c, sp) = |{tr ∈ T ↓ sp ∣ tr ∩ c ≠ �}| ∗ Σtr∈T↓spΣs∈tr∩c∧s.activiy=fishings.len

(3)dW (s, sp) =
�(s.cell, sp) ∗ s.len

Σs�∈tr∧s� .activity=fishing(�(s
�.cell, sp) ∗ s�.len)

∗ catch.sp
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regular grid. The fishing effort for a spatio-temporal cell is defined as the ratio between 
the area of the cell “swept” by vessels while fishing during the associated time period 
and the total area of the cell itself. The swept area depends on the employed gear which 
can be recovered from a specific dataset where each vessel, identified by its MMSI, is 
associated with its gear.

In the following we will denote by c a generic spatio-temporal cell in the area and 
period of interest, and by g a gear (small and large bottom otter trawl, Rapido and mid-
water pair trawl).

Definition 4 Let c be a spatio-temporal cell and g a gear. The fishing effort wrt the gear g 
in the cell c is defined as follows:

where T is the set of multiple aspect trajectories; len(tr ∩ c) returns the sum of the lengths 
of the fishing segments of trajectory tr falling in the spatio-temporal cell c; gear_width(g) 
is the width of the net of gear g; area(c) is the total area of the spatial component of the cell 
c.

It is worth noting that we can obtain the total fishing effort in a spatio-temporal cell c 
by summing up the fishing effort for each gear.

Thanks to the reconstruction and the semantic enrichment of trajectories we can 
compute the lengths of the fishing segments falling in each cell. This allows a more 
accurate and realistic estimate of the swept area and therefore of the fishing effort.

3.4.1  Catch per unit effort (CPUE)

Catch per unit effort (CPUE) is an indicator of the species abundance in the assessment 
of fishery resources. This index represents a valid method to evaluate the population 
trends where, a decrease of CPUE indicates a situation of over-exploitation, a steady 
CPUE value points out sustainable exploitation of the fishery resources, and an increase 
of its value corresponds to a healthy and growing population.

In order to compute this indicator, we need the quantity of fish caught in each spatio-
temporal cell by boats having a particular gear g.

Definition 5 Let c be a spatio-temporal cell and g a gear, the fish catch wrt to the gear g in 
cell c is defined as follows:

where T is the set of multiple aspect trajectories; quantity(tr, c) returns the sum of the fish 
quantities in kilograms associated with the fishing segments of trajectory tr falling in the 
spatio-temporal cell c.

Note that the function quantity can be computed by using either the uniform or the 
weighted distributions, and this will produce different values for catch that we denote by 

(4)fe(c, g) =
(Σtr∈T ,gear(tr)=glen(tr ∩ c)) ∗ gear_width(g)

area(c)

(5)catch(c, g) = Σtr∈T ,gear(tr)=gquantity(tr, c)
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catchU(c, g) and catchW (c, g) , respectively. Correspondingly, we obtain the uniform CPUE 
index and the weighted CPUE index defined as follows.

Definition 6 Let c be a spatio-temporal cell and g a gear, the catch-per-unit-effort (CPUE) 
wrt to the gear g in cell c is defined as follows:

CPUE is, therefore, a key indicator for fisheries management since it gives information 
on the sustainability of the fishing activities in the area of interest. As a consequence, an 
accurate forecast of CPUE could help decision makers to maintain a sustainable fishing 
business by adapting the fisheries management plans based on its forecasted values.

3.5  Implementation

To construct and store the set of multiple aspect trajectories, we used MobilityDB [52], an 
open source extension to the PostgreSQL database system5 and its spatial extension Post-
GIS6. It provides temporal types and spatio-temporal operators that ease the management 
of moving objects.

One main feature of MobilityDB is that it offers a construct for representing the evolu-
tion of a value during a sequence of time instants. The values between successive instants 
are interpolated using a linear function. Clearly, this construct perfectly suites the represen-
tation of trajectories, which are reconstructed from a sequence of spatio-temporal data. In 
our case, the spatio-temporal points are the AIS data aggregated on the basis of the trajec-
tory id. We created a set of objects of type tgeompoint, which is a temporal type model-
ling a point changing its position along a time period.

Next, the function trajectory is applied to these objects, and a geometry value 
is returned. In this way the trajectory can be visualized. In our work, for visualizing tra-
jectories and the result of our analyses, we used QGIS7, an Open Source GIS that sup-
ports viewing, editing, and analysis of geospatial data. For instance, Fig. 3(left) shows the 
sequence of AIS data, i.e., the sequence of spatio-temporal points, related to the trip of a 

(6)cpueX(c, g) =
catchX(c, g)

fe(c, g)
for X ∈ {U,W}

Fig. 3  Trajectory visualisation as a sequence of spatio-temporal points (left), as a continuous function 
(center), and as a semantic object where the activity attribute is highlighted (right)

5 https:// www. postg resql. org/
6 https:// postg is. net/
7 https:// qgis. org/ en/ site/
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fishing boat, whereas Fig. 3(center) illustrates the continuous representation of the same 
trip obtained by using the MobilityDB construct. The linear interpolation is internally 
implemented by the system, with the dual advantage of raising the user from this task and 
simplifying queries and analyses. Note that using a different interpolation technique is pos-
sible but it would require an explicit implementation.

MobilityDB provides a lot of spatio-temporal operators to handle trajectories. For 
instance, startTimestamp and endTime-stamp return respectively the first and last 
time instant among a set of time instants and this can be useful to extract the beginning and 
ending points of a trajectory; getValue returns a value at a particular time instant. There 
are operators to check topological relations between trajectories, like tintersects, 
tdisjoint, and others to compute distances. Interestingly the results of these operators 
are values changing in time. In fact, it can happen that at certain time periods trajectories 
enjoy the relations whereas at other ones they do not, and the distance between the objects 
can vary depending on the movement of the objects themselves. For instance, the user can 
check whether a fishing vessel respects the rule that it can fish only at a distance greater 
than three nautical miles from the coast and eventually detect where and when the ban has 
not been observed.

MobilityDB allows for an easy representation of multiple aspect trajectories where 
semantic attributes can be modelled as temporal types. This means that we can model in 
a single table both the sequence of spatio-temporal points forming a trajectory and infor-
mation associated with the whole trajectory itself, such as the duration and length of the 
trajectory. Moreover, a trajectory can be segmented and each segment can be stored as a 
temporal type. Even in this case we can add other attributes modelling features of the seg-
ment itself, such as the speed, the activity, the transmission and the quantity of caught fish. 
In Fig. 3(right) the different colours describe the activities of the fishing vessel. They allow 
the user to immediately detect where the vessel is fishing and also the shape of the move-
ment. For instance, the figure highlights several circular movements and the experts have 
confirmed that they are typical of this kind of fishing activity.

Finally, MobilityDB provides support for the GiST (Generalized Search Tree) and SP-
GiST (Space-Partition GiST) indexes, which can be created for table columns of temporal 
types. We used such indexes for accelerating spatial, temporal and spatio-temporal queries.

4  Exploratory data analysis

This section presents some analyses performed with MobilityDB on the obtained spatio-
temporal database of the Northern Adriatic sea. For these analyses, a suitable cell size for 
the spatial grid resulted in being 3x3 km.

The first analysis aims at visualizing the regions where there are transmission problems. 
We exploit the anomaly attribute, and in particular, we investigate trajectories having this 
attribute set to 1. In Fig. 4 we show for each cell the percentage of trajectories that got dis-
connected from the AIS for a time period greater than 30 minutes while crossing that cell 
with respect to the total number of trajectories passing through the cell.

Looking at Fig.  4, it is evident that the no-transmission anomaly has decreased a lot 
from 2015 to 2018. In fact, in 2015 the area where this percentage is over 50% is extensive, 
and it covers almost the whole fishing zone. Instead, in 2018 this phenomenon is localized 
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in few areas, i.e., close to the coasts and along the borders of the territorial waters. Moreo-
ver, in 2018 there are also some isolated cells in the southern part.

The low spatial coverage of AIS is a well-known issue, and the amount of missing data 
can vary substantially between vessels as discussed in [42]. Our analysis reveals that data 
from 2018 are more reliable and can be helpful in detecting areas where the AIS signal 
is not received well, like the isolated cells in the southern portion of the sea area under 
investigation.

This analysis is an example of how the semantic knowledge hidden in a single attribute, 
such as the anomaly attribute, can be useful to improve the general spatio-temporal knowl-
edge of the domain of interest significantly. On the one hand, the progressive low-coverage 
reduction of AIS data is per se a piece of highly valuable information for ecologists and 
policymakers since this ensures the reliability of the collected data. On the other hand, the 
proposed implementation allows the experts to continuously monitor the degree of cover-
age and eventually decide to add further terrestrial AIS receivers.

The second and third analyses take advantage of the catches distribution and infer some 
knowledge on key species in the area. In fact, spatializing the distribution of catches has 
several important applications. For instance, it allows us to obtain knowledge about the 
seasonal variation of the fishing grounds. This, in turn, is useful for explaining the fisher 
behavior and better understanding the seasonal migration of a target species. Figure  5 
reports the seasonal spatial distribution of cuttlefish, Sepia officinalis, aggregated by fish-
ing gears (SOTB, LOTB and RAP) in 2018. Cuttlefish is one of the main target species of 
the Adriatic Sea; hence it is an ideal case study for showing seasonal migratory behavior. 
It is worth noting that the most productive seasons were autumn and winter, with two high-
density areas, one nearer the coast and the other one more offshore, at the border with the 
Croatian waters. In spring, the catches resulted more scattered, while in summer, the catch 
area was more defined and localized closer to the Italian coast. This is in line with the 
general ecological knowledge about the behavior of the species; hence, the catches data 
correctly reflect cuttlefish seasonal spatial distribution behavior. Figure 5 also reports the 
comparison between the uniform (A) and the weighted (B) distribution maps of cuttlefish 
Sepia officinalis in 2018. It is evident that the maps obtained with the weighted distribution 
(B) are more defined, allowing the identification of the fishing grounds of cuttlefish better.

Another important application of the spatial distribution of catches is detecting differ-
ent fishing grounds over the years. As an example, Fig.  6 shows the spatial distribution 
of anchovies catches in fishing grounds recorded in winter 2015, 2016, 2017, and 2018 
and distributed according to the weighted distribution of the catch. The maps clearly show 
how the fishing grounds and, consequently, the distribution of anchovies changed over the 
years. In particular, a gradual reduction of the fishing grounds is observed from 2016 to 
2018. This is clearly a piece of relevant information for both ecologists and policymakers: 

Fig. 4  Spatial distribution of the no-transmission anomaly, years 2015, 2016, 2017 and 2018, respectively
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if the fishing ground reduction results from overexploitation of the species, they can adopt 
appropriate countermeasures.

Finally, we would like to point out that these are only a few examples of the analyses that 
can be performed using the dataset of multiple aspect trajectories. For instance, we can focus on 
vessels equipped with specific fishing gear (i.e., LOTB, SOTB, RAP, and PTM) and determine 
their fishing grounds and the corresponding degree of exploitation. This fine-grained analysis 
could help to reveal different efficiency degrees of fisheries that, in turn, could constitute a basis 
to implement specific management actions for these activities. Moreover, we can vary our anal-
ysis according to different periods and consider only certain sea areas. For instance, one could 
focus on protected areas, like the Pomo Pit or the Sole Sanctuary. We can also select the behav-
ior of single trajectories satisfying complex conditions concerning both their movements and 
their semantic annotations by using the operators available in MobilityDB.

5  Experimental results with machine learning models

This section presents the experiments using machine learning models for regression or, 
simply, regressors. Our objective is to estimate the CPUE, the catch-per-unit effort intro-
duced in Section 3.4.1, and evaluate the data fitting of the models using learning curves. 
Recall that we need to fix a spatial grid, which, for these analyses, consists of cells of size 
5x5 km.

Fig. 5  Comparison between uniform (A) and weighted (B) distribution of cuttlefish Sepia officinalis, aggre-
gated by seasons (winter, spring, summer and autumn 2018)
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We run our experiments with ten well-known machine learning regressors, as imple-
mented in the Scikit learn library [9]: Extra Trees [18], Random Forests [7] XGBoost [11], 
Bagging [6], Cat Boost [36], KNeighbors [2], LGBM [21], HistGBoost [34], Adaptive RF 
[19], MLP [40]. Among them, Extra Trees [18] and Random Forest (RF) [7]  have gained 
considerable attention because of their optimal regression performance. Extra Trees or 
Extremely Randomized Trees is a robust ensemble learning algorithm. In particular, it is 
an ensemble of decision trees similar to Random Forest. The Extra Trees algorithm creates 
a large number of decision trees from the training dataset. Predictions are made by averag-
ing the prediction of the decision trees. This method uses the whole original sample, unlike 
RF. RF uses bootstrap replicas. On the other hand, for selecting cut points, RF selects the 
optimum split while Extra Trees selects a split point at random.

5.1  Evaluation metrics

To compare the performance of the regressor models, we use the Mean Absolute Error 
(MAE), Root Mean Squared Error (RMSE), and Coefficient of Determination ( R2 ). The 
MAE, RMSE range between 0 and 1, where 0 is the best case. However, the R2 is defined 
between 1 and -1, where 1 is the best-case scenario and any value lower than zero points 
out arbitrarily worse results. These three metrics are formally defined as follows:

(7)MAE =
1
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(
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Fig. 6  Spatial distribution of anchovy Engraulis encrasicolus in winter, years 2015, 2016, 2017 and 2018, 
respectively
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where �̂ and �̄ are the predicting values and the average of observed values respectively, 
while �̂ stands for the ground truth.

5.2  Attribute description and data splitting

The season information was converted into numeric values by using one-hot-encoding of 
the attribute regarding the seasons of each year. Hot-encoding essentially transforms cat-
egorical into numeric attributes. The list of attributes used for modeling the fishing predic-
tion is described in Table 4. They are divided into three categories: environmental, spatial, 
and temporal.

Concerning the work of Adibi et al. [1], we have significantly extended the steps of data 
preparation and preprocessing, including the tasks for removing outliers, handling missing 
values, and data standardization by scaling the attributes of the dataset. The standardization 
was needed to set all features in the same range and transform data into a Gaussian-like 
continuous distribution. That was carried out by using the approximation of Kolgomorov-
Smirnov. For the target value estimation, we calculated the uniform and weighted CPUE 
indexes according to the definition provided in Section 3.4.1. Table 5 shows the results for 
the top ten regressors considering the selected metrics, i.e., MAE, RMSE and R2 . The data 
split used here was a standard 5-fold cross-validation (i.e., dataset is split into 5 folds, and 
each fold is used as a testing set eventually in the validation procedure) with the error of 
the five estimates averaged as the final performance measurement.

The use of machine learning models usually involves careful tuning of learning param-
eters and model hyperparameters. The strategy used in this article for parameter tuning 
was grid-search, varying uniformly the number of parameters for each machine learning 
method using the standard intervals of the Scikit learn package. However, after selecting 
the interval of parameters for each model, we also used a Gaussian Process to speed up 
the optimization process. The Neural Network architecture was the Multi-layer Perceptron 
(MLP) with 10-100 layers, with activation function ReLu and optimizer Adam and the 
learning rate was not fixed.

(9)R2 =1 −

∑n
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Table 4  List of attributes used for modeling the fishing prediction

Attribute description Symbol Type Unit

Environmental daily chlorophyll-a concentration chl float mg∕m3

daily sea surface temperature sst float kelvin
daily spectral significant wave height vhm0 float meter

Spatial latitude of grid cell centre lat float degree
longitude of grid cell centre lon float degree

Temporal day of year (1-365) doy int
month of year (1-12) moy int
week of year (1-53) woy int
season (1-4) season int
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5.3  Results

For the uniform CPUE, the Extra Tree regressor achieved the highest R2 score with 0.65, 
followed by the classical Random Forest regressor with 0.61, and then one ensemble-based 
bagging method with 0.57. Error-based metrics also reflect the same trend in terms of 
results found with the R2 score. Although state-of-the-art methods XGBoost and CatBoost 
usually outperform traditional regressors, the results underperformed Random Forest for 
this particular dataset. Another classical regressor worth mentioning is the Support Vector 
Regressor (SVR) [47] and variations which also scored poorly when compared with the 
other regressors; hence it is not included in the table. This table also shows the weighted 
CPUE results, which is considered a more realistic fishing index. The top-5 regressors are 
similar to the uniform CPUE, corroborating our findings that the best regressors are viable 
for suggesting fishing catch prediction for the next seasons. However, estimation based on 
uniform CPUE performs better than the weighted CPUE.

We also analyzed the learning curves assessing the generalization power by increasing 
the number of training samples. This is very relevant to show the variance of the regressors 
relating to the model sensitivity when the training set varies. Figure 7 shows the learning 
curves of fifteen regressors using different splitting in the x-axis standing for the size of 
data sampling during the training phase with the step of 25% in size. The corresponding 
evaluation metric R2 score is shown on the y-axis. It is worth observing that all attributes 
were used for the estimation without performing attribute selection or reduction. The learn-
ing curves illustrate the data fitting learned by the model. Additionally, we find out how 
much we benefit from adding more training data and whether the estimator suffers more 
from a variance error or a bias error.

For the top-three regressors, Extra Trees, Random Forest, and Bagging, both the valida-
tion score and the training score converge to a better score value with the increasing size of 
the training set. Thus, we will probably benefit much from more training data with series 
from extra years. It is worth noticing that linear regression performs low in the score if 
the sampling size is larger. This shows that the problem is not easily solved with a linear 

Table 5  Results of the regressors using three evaluation metrics - MAE, RMSE and R2 score - over the 
dataset prepared for the experiments

Values are ordered according to the R2 Score and RF corresponds to Random Forest

Uniform CPUE Weighted CPUE

Regressor MAE RMSE R2 Regressor MAE RMSE R2

Extra Tree [18] 0.34 0.59 0.65 Extra Tree [18] 0.41 0.62 0.60
Random Forest [7] 0.37 0.62 0.61 Random Forest [7] 0.44 0.66 0.56
Bagging [6] 0.40 0.65 0.57 Bagging [6] 0.47 0.69 0.51
Cat Boost [36] 0.45 0.69 0.52 Cat Boost [36] 0.50 0.71 0.49
XGBoost [11] 0.45 0.69 0.52 XGBoost [11] 0.50 0.72 0.48
kNeighbours [2] 0.44 0.71 0.49 LGBM [21] 0.52 0.74 0.44
LGBM [21] 0.47 0.72 0.47 kNeighbours [2] 0.50 0.74 0.44
HistGBoost [34] 0.47 0.73 0.47 HistGBoost [34] 0.52 0.74 0.44
Adaptive RF [19] 0.49 0.77 0.40 MLP [40] 0.55 0.78 0.38
MLP [40] 0.50 0.77 0.40 Adaptive RF [19] 0.54 0.78 0.38
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approach. In contrast, for small amounts of data, the training score of the regressors, Gradi-
ent Boosting, Linear Regressor, nuSVR [10], and SVR are much greater than the validation 
score. Adding more training samples will most likely increase generalization.

6  Conclusion

This work built and analyzed a spatio-temporal database of fishing vessel trajectories in 
the Northern Adriatic sea. We started from the terrestrial AIS data of the area of interest 
and the fish reports of the primary fish market, Chioggia, for the years 2015, 2016, 2017, 
2018. We determined the trajectories and introduced semantic attributes capable of unveil-
ing interesting information and aspects of the original data themselves. Moreover, we gave 
a formal definition of two different catch distribution techniques, the uniform and weighted, 
and we put them at work and compared their behavior. We implemented the spatio-tempo-
ral database using MobilityDB, which provides a suitable environment for storing, query-
ing, and visualizing trajectories of moving objects.

The ecological experts proposed some analyses on the obtained database. We first ana-
lyzed the AIS transmission anomalies – stored as a new semantic feature – that allowed us 
to acknowledge a concrete and progressive improvement of the data completeness in the 
years 2015-2018, thanks to the growing use of the AIS system in the fishing vessels and the 
increasing AIS data receiving coverage. We proceeded with the analysis of the two proposed 
distribution techniques. It resulted that the weighted distribution is a more realistic index with 
respect to the uniform one, able to better define the fishing ground of the species of interest. 
Besides, we showed how multiple aspect trajectories could assess the fishing activities, cap-
turing spatial and temporal patterns.

Fig. 7  Learning curves of the regressors assessed with the coefficient of determination and by varying the 
size of data training sampling. The black line stands for the training estimation, while the yellow dashed 
line is the validation score using 5 fold cross-validation

571GeoInformatica (2022) 26:551–579



1 3

Furthermore, we have built predictive models on the available dataset. Our results indicate 
that Machine Learning is a viable data analysis technique for fisheries and fish ecology appli-
cations. In particular, a large number of regressors were tested, aiming to predict CPUE. We 
cannot compare our work with the results reported in [1] because our approach used different 
data preparation methods and a significantly larger dataset (4 years instead of 2). Besides, 
additional regressors (10 in total) were also adopted in this study. Results based on three met-
rics, including error-based and coefficient of determination, achieve a score of 0.65 out of 
1 for R2 . The result is considered a good achievement because the problem is challenging, 
given the fact that the dataset contains multivariate and spatio-temporal aspects to cope with.

As future work, we intend to use a more granular time component (e.g. months) than the 
currently used seasons. Also, a more fine-grain prediction based on fishing gear would be 
worthful to be performed as soon as more data are available. Another issue is the train-test 
regime. Ideally, when data is time-stamped, cross-validation should be avoided as it will not 
be sensitive to latent concept drift almost always present in real data. In our case, one should 
train on a dataset representing several years and test on the following year to model the real 
deployment situation. This regime will be applied when we have more years of data at our 
disposal. It will be interesting to compare such longitudinal train-test regime with cross-val-
idation results on the total data available at that time. Furthermore, anomaly behavior of dif-
ferent species, as investigated in [23, 35], might be another interesting future direction. Also, 
as chlorophyll-a and sea surface temperature have been proved to be important driving fac-
tors for fish availability [44, 51], it would be interesting to use them to define a more refined 
approach to catch distribution. Finally, as a longer-term goal we will investigate how fishing 
predictions may change when the models we build are informed by climate change models.
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