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Abstract—Air pollution monitoring requires a large number
of expensive devices, especially in large cities. To reduce the cost
of this process, the use of mobile devices has been proposed.
Some proposals promote the use of cheap sensors on board of
public buses instead of just a limited number of specialized
vehicles. Analyzing the data provided by these mobile devices
is computationally costly and complex with traditional database
tools. Instead, we propose using MobilityDB, a novel database
implemented as an extension to PostgreSQL and PostGIS, which
provides support for storing and querying geospatial trajectory
data and their time-varying properties (like air-pollution pa-
rameters), implementing persistent database types and query
operations for such data. We use public data from the city of
Delhi to show the viability and advantages of our approach and
how analytical queries are expressed in a concise and elegant
way using MobilityDB data types and functions.

Index Terms—MobilityDB, spatiotemporal databases, mobility
analysis, air pollution

I. MOTIVATION AND RELATED WORK

Air pollution has reached life-threatening levels in many
highly-populated cities.1 Therefore, public policies are carried
out to protect public health, for example, restricting activities
in zones with low air quality. Decision making requires
monitoring air quality in urban and industrial areas in cities
affected by this problem. Air quality is normally measured as
a combination of parameters, like Particular Matter (PM), Ni-
trogen dioxide, Sulfur dioxide, Carbon monoxide and Ozone.2

Particulate Matter (measured in µg/m3) measures the amount
of solid particles and liquid droplets found in the air. High val-
ues of this parameter are especially dangerous. These particles
are produced as a result of the action of sulfur dioxide and
nitrogen oxides, pollutants emitted by power plants, industries
and automobiles, and they are small enough to be inhaled
by humans. PM is categorized according to the size of the
particles. For instance PM1 represents particles with diameters
that are generally 1 micron and smaller, PM2.5 particles with
diameters less than 2.5 microns and smaller, and so on.

Given its importance, air pollution is measured regularly in
most cities, through sensors that record multiple parameters.
Multiple monitors are used for this, which, given the increasing

1https://waqi.info/
2https://www.epa.vic.gov.au/for-community/monitoring-your-environment

/about-epa-airwatch/calculate-air-quality-categories

number of pollutants and locations, is an expensive proce-
dure, especially (although not only) in developing countries.
Therefore, a different approach has become popular, namely
mobile air pollution monitoring. Here, air pollution monitoring
equipment is mounted on a mobile platform. In this sense,
two main approaches were adopted. One of them places
quality air monitoring equipment on a mobile platform (e.g.,
a commercial van) [1]. Another approach promotes the use of
small, portable low-cost sensors that may be attached to an
individual or mounted on a bike [2]. In any case, mounting
sensors on a mobile platform allows for observations in various
locations.

As mentioned above, air monitoring in developing countries,
where many highly-populated cites are at risk [3], is in most
cases unaffordable. The case of Delhi, in India, is represen-
tative of this situation [4]. This is one of the most densely
populated urban centers in the world, and air pollution there is
also one of the highest in the world. The work reported in [5] is
based on one of the approaches commented above. Low-cost
sensors were installed on public buses, taking advantage of
the fixed travel routes of the buses, and also of the additional
equipment that the buses carry. There are many technical
challenges in this method, but we are not interested in the
technical part but in efficiently processing and analyzing the
data produced by these devices. The work in [4] reports an
experience where sensors were mounted on thirteen public
buses in Delhi between November 1st, 2020 and January 31st,
2021, resulting in a dataset that is publicly available.3 In the
present work we use this dataset as a case study.

Mobile data collection typically results in a dataset which is
spatially and temporally discontinuous. That means, unlike in
the case where a sensor is placed in a fixed location, mobile
sensors do not repeat sampling at such location with regularity,
that means that there are spatial and temporal gaps. Statistical
and mathematical techniques have been proposed to solve this
problem, for example, determining a long-term mean from
incomplete samples, which requires adjusting the mobile data
based on the value at a fixed location monitor or incorporating
both mobile and fixed location data into the air pollution
model [6], [7]. Having many mobile low-cost sensors (instead
of a few ones moving around) may mitigate this problem. In

3https://www.cse.iitd.ac.in/pollutiondata/details

https://waqi.info/
https://www.epa.vic.gov.au/for-community/monitoring-your-environment/about-epa-airwatch/calculate-air-quality-categories
https://www.epa.vic.gov.au/for-community/monitoring-your-environment/about-epa-airwatch/calculate-air-quality-categories
https://www.cse.iitd.ac.in/pollutiondata/details


addition, we propose to take advantage of a spatiotemporal
database to process and analyze the data produced by mobile
sensors as we discuss in this work.

MobilityDB [8] is a novel database that builds on PostGIS,4

the spatial extension of the PostgreSQL database.5 MobilityDB
extends the type system of PostgreSQL and PostGIS with
data types for representing spatiotemporal data. These data
types are based on the notion of temporal types and their
associated operations. MobilityDB defines temporal types that
can represent the evolution over time of any kind of data, like
integer, float, Boolean, and text. Thus, new data types like
temporal integer (tint), temporal float (tfloat), and temporal
Boolean (tbool) are defined, along with functions to manipu-
late them. Combining the support of spatial and temporal data
types, MobilityDB is also a powerful tool for building so-
called mobility data warehouses, as shown in [9]. We explain
MobilityDB in detail in Section III.

Contributions and Paper Organization

The temporal data types included in MobilityDB allow
representing long sequences of geographic data (e.g., mo-
bile stations’ positions) and float data (like PM parameters),
making the manipulation and analysis of such kinds of data,
simpler and more efficient than the traditional database al-
ternatives. In particular, regarding what was mentioned above,
spatiotemporal interpolation is already built-in in the database.
Further, complex queries can be written in a much simpler way
than using SQL without the mobility extension. In this paper
we show how we can take advantage of those features using
the Delhi case study reported in [4]. As far as we are aware
of, this is the first proposal for using spatiotemporal databases
to manage and analyze mobile air pollution data (and mobile
sensor data in general).

In the remainder, Section II introduces our case study.
Section III presents the MobilityDB database, in order to make
the paper self-contained, also using our case study to give
some examples. In Section IV we show how the MobilityDB
database for our case study is built, while in Section V we
show the power of MobilityDB to write complex spatiotem-
poral queries in a concise and elegant way. A discussion
concludes the paper in Section VI.

II. RUNNING EXAMPLE

This section describes the running example and the public
dataset we use throughout this paper. The dataset contains
observations obtained by low-cost sensors mounted in the
public transportation (buses) of Delhi city in India.6

The dataset is composed of different files, one per day from
1st November 2020 to 30th January 2021. Each file contains
observations from thirteen different buses equipped with mo-
bile sensors capable of measuring three type of pollutants:
PM1.0, PM2.5 and PM10.

4https://postgis.net/
5https://www.postgresql.org
6https://www.cse.iitd.ac.in/pollutiondata/details

Every file contains a header and each row represents an
observation:

• Id (number): row identifier
• uid (text): identifies univocally an observation in the

dataset
• dateTime (text): instant when the observation was

recorded.
• deviceID (text): identifier of the device mounted in the

bus (there are 13 buses)
• lat (double): latitude coordinate (WGS84)
• lon (double): longitude coordinate (WGS84)
• pm1_0 (double): PM1.0 sampled value
• pm2_5 (double): PM2.5 sampled value
• pm10 (double): PM10 sampled value
We first create a table for importing the data into a .csv file,

which we call delhiInput, as follows.
CREATE TABLE delhiInput(seq int, uid text, deviceId text,

t timestamptz, lat float,
long float, pm1_0 float, pm2_5 float, pm10 float);

To allow displaying the position of each measurement in a
geographic information system (GIS) like QGIS,7 we add a
geom attribute as follows:
ALTER TABLE delhiInput
ADD COLUMN geom geometry(Point, 4326);
UPDATE delhiInput SET geom = ST_MakePoint(long, lat);

The final input database contains over twelve million
records with a size of 12 GB.

Just as an introductory illustration, Fig. 1 shows a portion
of the sensor measures of PM2.5 lower than 50 (in green) and
higher than 200 (in red).

Fig. 1. Portion of sensor measures in the Delhi dataset. PM2.5 > 200 (red);
PM2.5 < 50 (green).

III. MOBILITYDB: A MOBILITY DATABASE

This section presents the MobilityDB8 database. A more
formal description can be found in [8].

7www.qgis.org
8https://mobilitydb.com/

https://postgis.net/
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As mentioned, MobilityDB is built on top of PostgreSQL.
MobilityDB provides set, span, and span set types for rep-
resenting finite subsets of the domains of base or time data
types. Set types represent a set of distinct values. Examples
are intset or dateset, which are defined over the int and date
types provided by PostgreSQL. Span types represent ranges
of base values and are defined by a lower and upper bounds,
which may be inclusive or exclusive. Examples are intspan
and datespan. Span set types represent set of disjoint spans.
Examples are intspanset and datespanset.9

MobilityDB implements a set of operations on time types,
which are defined at two granularities: date or timestamptz
(timestamp with time zone). Four times types are used for
defining finite subsets of the time domain at each granularity:
date, dateset, datespan, and datespanset, as well as times-
tamptz, tstzset, tstzspan, and tstzspanset. We describe next
these types using the date granularity.

A date value represents a time instant at a day granularity.
A dateset value represents a set of distinct date values. It
must contain at least one element, and the elements must be
ordered. An example is as follows
SELECT dateset '{2021-01-01, 2021-01-03}';

A value of the datespan type has two bounds, the lower
and the upper bounds, which are date values. The bounds
can be inclusive (represented by “[” and “]”), or exclusive
(represented by “(” and “)”). A datespan value with equal
and inclusive bounds corresponds to a date value. An example
of a datespan value is
SELECT datespan '[2021-01-01, 2021-01-03)';

A datespanset value represents a set of disjoint datespan
values. It must contain at least one element and the elements
must be ordered. An example is:
SELECT datespanset '{[2021-01-01, 2021-01-03),

[2021-01-04, 2021-01-06)}';

MobilityDB also provides temporal types for represent-
ing values that evolve across time.10 The temporal types
tbool, tint, tfloat, and ttext are, respectively, based on the
PostgreSQL types bool, int, float, and text. Temporal types
tgeompoint and tgeogpoint are also provided. These types
are based on the PostGIS types geometry and geography
restricted to 2D and 3D points. Temporal types may be discrete
or continuous depending on their base type. Discrete temporal
types (such as tbool, tint, or ttext) evolve in a stepwise manner,
while continuous temporal types (such as tfloat) evolve in
either a linear or stepwise manner.

The duration of a temporal value states the time extent at
which the evolution of values is recorded. Temporal values
come in three durations, namely, instant, sequence, and se-
quence set. A temporal instant value represents the value at a
time instant, such as

9The span and span set types in MobilityDB correspond to the range and
multirange types in PostgreSQL, but they have a more efficient implementa-
tion.

10Currently, MobilityDB provides temporal types only at the timestamptz
granularity.

SELECT tfloat '17.1@2022-01-01 08:00:00';

A temporal sequence value represents the evolution of the
value during a sequence of time instants, where the values
between these instants are interpolated using either a discrete,
stepwise or linear function. An example with discrete interpo-
lation is as follows:

SELECT tint '{10@2022-01-01 08:00:00,
20@2022-01-01 08:05:00, 15@2022-01-01 08:10:00}';

where the value is defined at the given timestamps and unde-
fined everywhere else (in other words, discrete interpolation
means no interpolation). An example of a temporal sequence
value with step interpolation is as follows:

SELECT tint '(10@2022-01-01 08:00:00,
20@2022-01-01 08:05:00, 15@2022-01-01 08:10:00]';

while an example of temporal sequence value with linear
interpolation is as follows:

SELECT tfloat '(10@2022-01-01 08:00:00,
20@2022-01-01 08:05:00, 15@2022-01-01 08:10:00]';

The value of a temporal sequence is interpreted by assuming
that the time period defined by every pair of consecutive values
v1@t1 and v2@t2 is lower inclusive and upper exclusive,
unless they are the first or the last instants of the sequence, in
which case the bounds of the whole sequence apply. The value
of the temporal sequence between two consecutive instants
depends on whether the subtype is discrete or continuous. For
example, the tint sequence above represents that the value is
10 during (2022-01-01 08:00:00, 2022-01-01 08:05:00),
20 during [2022-01-01 08:05:00, 2022-01-01 08:10:00),
and 15 at the end instant 2022-01-01 08:10:00. On the
other hand, the tfloat sequence above tells that the value
evolved linearly from 10 to 20 during (2022-01-01 08:00:00,
2022-01-01 08:05:00) and evolved from 20 to 15 during
[2022-01-01 08:05:00, 2022-01-01 08:10:00]. MobilityDB
also allows representing sequences with stepwise interpolation
when the subtype is continuous. An example is given next.

SELECT tfloat 'Interp=Step;(10.1@2022-01-01 08:00:00,
20.2@2022-01-01 08:05:00, 15.2@2022-01-01 08:10:00]';

Finally, a temporal sequence set value represents the evo-
lution of the value at a set of sequences, where the values
between them are unknown (like in the case of mobile sensors
with no measures during long intervals), for example:

SELECT tfloat
'{[17.2@2022-01-01 08:00:00, 17.5@2022-01-01 08:05:00],
[18.2@2022-01-01 08:10:00, 18.5@2022-01-01 08:15:00]}';

Temporal types have an associated set of operations, which
we use later in our queries. As an example, operations get-
Time and getValues return, respectively, the projection of
a temporal value into the time domain and the value range.
Both operation results in a range value. Operations atTime and
atValues restrict the function to a given subset of the time or
base domain defined by a range value. For example, atTime
applied to a trip returns the trip restricted to an interval which



is an argument of the function. Operations atMin and atMax
restrict the function to the points in time when its value is
minimal or maximal, respectively, while valueAtTimestamp
gets the base value of the function at a given timestamp.

Local aggregate operators compute an aggregate base value
from a single temporal value. For example, the twavg com-
putes the time-weighted average of a base value (for example,
in our case, a time-weighted average of a PM value, which is
computed very efficiently, as we show later).

Finally, generalizing operations on base types for temporal
types is called lifting [11]. The semantics of lifted operations
is that the result is computed at each instant using the corre-
sponding non-lifted operation. For example, the sum between
two base types is lifted by allowing any of the arguments to
be a temporal type and return a temporal type. Thus, we take
two parameters represented as temporal floats, and compute
their average at any time instant.

Aggregate operations may also be lifted. Examples are
tcount, tmin, tmax, and tavg, which combine several temporal
values, yielding a new temporal value where the traditional
aggregate functions count, min, max, and avg are computed
at each time instant.

Finally, the unnest operation, commonly used in querying,
transforms a temporal value into a set of (value,time) pairs.

It is important to remark that, as discussed in detail in [8],
to ensure the closure of operations, when the operands of a
lifted operation have a linear interpolation, the result of the
operation must also be represented using linear interpolation.
Since the result of a lifted operation over two linear functions
may be quadratic, as is the case for temporal multiplication of
real numbers, MobilityDB approximates this result by a linear
function while keeping the turning points of the quadratic
function in the result.

We close this section by briefly showing the operations for
temporal types in MobilityDB. We use, as an example, a very
simplified version of the table that we build in Section IV.
The table pmtrips contains the identifier of the mobile device
(e.g., a bus), and a temporal float, representing the measured
values of the PM1.0 parameter at different times.

CREATE TABLE pmtrips(
deviceId varchar(5) PRIMARY KEY,
PM1_0 tfloat );

Tuples can be inserted in this table as follows:

INSERT INTO pmtrips VALUES
( 'd1', tfloat '{[25.0@2021-01-01, 25.0@2021-07-01),

[30.0@2022-01-01, 30.0@2022-04-01)}'),
( 'd2', tfloat '{[45.0@2021-04-01, 45.0@2022-01-01),

[60.0@2022-01-01, 60.0@2022-04-01)}');

Given this table with the two tuples, the query

SELECT deviceId, getTime(PM1_0)
FROM pmtrips

returns the following values

'd1' | {[2021-01-01, 2021-07-01), [2022-01-01, 2022-04-01)}
'd2' | {[2021-04-01 2022-01-01), [2022-01-01, 2022-04-01)}

The second column of the result is of type tstzspanset
since temporal types in MobilityDB have a timestamptz
granularity.

Similarly, the query
SELECT deviceId,

valueAtTimestamp(PM1_0, timestamptz '2021-04-15'),
valueAtTimestamp(PM1_0, timestamptz '2021-07-15')

FROM pmtrips

returns the following values
'd1' | 25 | NULL
'd2' | 45 | 45

where the NULL value above represents the fact that the
parameter for d1 is undefined on 2021-07-15.

The following query:
SELECT deviceId, atTime(PM1_0,

tstzspan '[2021-04-01, 2021-11-01)')
FROM pmtrips

returns
'd1' | {[25@2021-04-01, 25@2021-07-01)}
'd2' | {[45@2021-04-01, 45@2021-11-01)}

Here, the temporal attributes have been restricted to the period
given in the query.

The next query asks for the minimum and maximum values
and the time when they occurred:
SELECT deviceId, atMin(PM1_0), atMax(PM1_0)
FROM pmtrips

The result is:
'd1' | {[25@2021-01-01, 25@2021-07-01]} |

{[30@2022-01-01, 30@2022-04-01]}
'd2' | {[45@2021-04-01, 45@2021-10-01)} |

{[60@2021-10-01, 60@2022-07-01]}

The next query asks, given two devices ‘d1’ and ‘d2’, the
time periods where the PM1.0 measured by ‘d1’ was lower
than the one measured by ‘d2’.
SELECT P1.PM1_0 #< P2.PM1_0
FROM pmtrips P1, pmtrips P2
WHERE P1.deviceId = 'd1' and P2.deviceId = 'd2'

The query returns the temporal Boolean value
{[t@2021-04-01, t@2021-07-01), [t@2022-01-01,

t@2022-04-01)}

Note that no comparison is performed when a value is unde-
fined.

As an example of temporal aggregation, the next query asks
for the average PM1.0 value across time.
SELECT tAvg(PM1_0)
FROM pmtrips

This query returns
{[25@2021-01-01, 25@2021-04-01),
[35@2021-04-01, 35@2021-07-01],
...
[60@2022-04-01, 60@2022-07-01)}

Note that the second tuple in the result represents the
average between the values 25 and 45, valid in the interval
in which the two values are valid at the same time.



IV. BUILDING THE MOBILITY DATABASE

Having introduced the running example, we are ready to
build the mobility database. The idea is to transform the
table DelhiInput, which contains one record for each measure
obtained by the thirteen mobile sensors (that is, the twelve
million tuples), into a database containing one tuple for each
part of a trip of a bus carrying a sensor. These parts represent
trajectories where the gaps between recordings are less than
thirty minutes long (we explain this below). That means, a
bus trajectory will be split into many trips. Each record of the
new table contains four attributes of temporal type. First, there
is a trip attribute, which is of type tgeompoint representing
the continuous trip of the corresponding mobile sensor. Spa-
tiotemporal interpolation is carried out automatically by the
database engine when data are loaded and also when data
are queried. That means, for each time instant we obtain a
value, which can be the actual position or an interpolated one.
Then, we do the same for each PM parameter, namely PM1.0,
PM2.5 and PM10. For each one of them we define an attribute
of type temporal float (tfloat). Again, interpolation is defined
automatically. Details of the interpolation process can be found
in [8]. Finally, we obtain a sequence for each one of the four
attributes that were created. We detail the process next.

Each sequence is created from data that contains a value
and a time instant. Thus, we must add, in the input table
delhiInput, one column for the spatiotemporal position of
the sensor at each recording instant. The spatial position is
built using the PostGIS function ST_MakePoint and the time
instant is taken from column t. In this way we create the
column trip_inst which is of type tgeompoint, which is the
building block for the sequences of spatiotemporal positions
of the sensors. We proceed analogously for each parameter.
The procedure is as follows (we only show one of the PM
parameters, the other ones are analogous).

ALTER TABLE delhiInput
ADD COLUMN trip_inst tgeompoint;

UPDATE delhiInput SET
trip_inst = tgeompoint(ST_MakePoint(long, lat), t);

ALTER TABLE delhiInput
ADD COLUMN pm1_0_inst tfloat;

UPDATE delhiInput SET
pm1_0_inst = tfloat(pm1_0, t);

ALTER TABLE delhiInput
ADD COLUMN pm2_5_inst tfloat;

...

We can now create and populate the table containing the
sequence of spatiotemporal positions and parameters. We call
this table delhiTrips. We next show how we create the table
and produce the sequences using the tgeompoint and tfloat
constructors.

CREATE TABLE delhiTrips (Id integer, deviceId text,
trip tgeompoint, pm1_0 tfloat, pm2_5 tfloat, pm10 tfloat,
PRIMARY KEY (deviceid, Id) );

The trips of the buses, therefore the corresponding mea-
surements, have gaps. For example, a bus may run from 6AM
through 8PM and start over at 6AM. We cannot leave this

gap and consider a continuous sequence, since the interpola-
tion would be wrong. There are many ways for partitioning
trajectories. In this case, we assume that if there is a gap of at
least thirty minutes, then we consider that a new trips starts.
This explains why the primary key of the table is the pair
(deviceid, Id)

Due to space limitations we do not include the complete
script which splits the complete trajectory of each bus into
a collection of sequences, one per record. We only show the
statements that create the sequences. The statements below are
executed in a loop, one time for each device ID.

INSERT INTO delhiTrips
SELECT myid, deviceId,

tgeompoint_seq(array_agg(trip_inst ORDER BY trip_inst)),
tfloat_seq(array_agg(pm1_0_inst ORDER BY pm1_0_inst)),
tfloat_seq(array_agg(pm2_5_inst ORDER BY pm2_5_inst)),
tfloat_seq(array_agg(pm10_inst ORDER BY pm10_inst))

FROM delhiInput
GROUP BY deviceId;

Since we will most likely need to display in a GIS the
spatial trajectories of the sensors (and GISs do not understand
spatiotemporal data types), we created one additional column
of LineString type, that is populated using the MobilityDB
trajectory function, which computes the spatial projection of
the trip attribute, as follows:

ALTER TABLE delhiTrips
ADD COLUMN trajectory geometry(LineString, 4326);

UPDATE delhiTrips SET trajectory = trajectory(trip);

We finally deleted the sequences with a duration of less than
ten minutes. This is easily done with the duration function
provided by MobilityDB as follows:

DELETE FROM delhiTrips WHERE duration(trip) < '10 minute';

The resulting table contains 3352 tuples. Note that, since
there are thirteen buses, each bus trajectory has been split
many times. As additional information, we report that the
maximum number of trips (i.e., sequences) for a device is
401, while the minimum number of trips for a device is 119.

One of the immediately visible advantages of this approach,
refers to the database size. MobilityDB implements a data
compression strategy that is applied when data are loaded (this
also occurs in querying). This procedure removes redundant
data which can be inferred using interpolation. Intuitively, if
a bus moves in a straight line and the input database contains,
says, one hundred position records, only the first and last
positions are kept. This results in a dramatic size reduction, as
we can see in our example, where the 12 GB of the delhiInput
(including the geom column) was reduced to 680MB for the
delhiTrips table (including the trajectory column).

Figure 2 shows a portion of the trajectories of three mobile
sensors, represented with different colors.

V. USING THE MOBILITY DATABASE FOR ANALYSIS

In the previous section we showed how the novel Mobil-
ityDB database allows a fast data loading process, reducing
the size of the original database, in this case, by a factor



Fig. 2. Mobile sensors in Delhi.

of ten. Now we show how complex and useful analytical
queries can be expressed in SQL using MobilityDB. We do this
through typical queries that an analyst interested in the effect
of pollution over human health would likely want to express.
We remark that we do not aim at reporting performance
results, but at showing the functionality and expressiveness of
MobilityDB queries. Nevertheless, it is worth noting that all
the queries shown here ran in a few seconds over standard
laptop computers equipped with the PostgreSQL database
extended with MobilityBD functionality.

Given the high pollution levels that can be observed in the
raw data, bus drivers and passengers are exposed to different
pollutants during their trips. The following queries aim at
evaluating the length and duration of such exposures.

Query 1: Compute the time-weighted average of pollutants
to which each driver was exposed during her trips occurred in
the morning of 21th and 22nd of December of 2020

This query illustrates the benefit of working with a mobility
database. The twAvg function computes the time-weighted
average of a temporal float data type, in this case, of the
pollutants that were measured by the sensors carried by the
bus. The query reads in SQL:

WITH time AS (

SELECT tstzspanset
'{[21-12-2020 09:00, 21-12-2020 12:00],

[22-12-2020 09:00, 22-12-2020 12:00]}' AS period )
SELECT deviceid, id,

twAvg(atTime(PM1_0, time.period )) AS PM1_0,
twAvg(atTime(PM2_5, time.period )) AS PM2_5,
twAvg(atTime(PM10, time.period )) as PM10

FROM delhiTrips, time
WHERE PM1_0 && spanN(period, 1) OR

PM1_0 && spanN(period, 2) OR
PM2_5 && spanN(period, 1) OR
PM2_5 && spanN(period, 2) OR

PM10 && spanN(period, 1) OR
PM10 && spanN(period, 2)

We can see how simple results to express in MobilityDB
such a complex query. The first Common Table Expression
(CTE) computes the table time, with only one tuple: a span
set (a set of intervals) corresponding to one day’s morning and
the morning after. This avoids embedding the same literal in
different parts of the query. Then, we use the table delhiTrips
and keep the tuples that have temporal float pollutant measure-
ments (i.e. PM1.0, PM2.5 and PM10) that overlap the bounding
box of the period of interest (this is performed in the WHERE
clause). Nevertheless, since our period of interest is a spanset,
in this case composed of two spans, we need to split it and
calculate each bounding box separately. The subexpressions
spanN(period, 1) and spanN(period, 2) return the first and
second part of the spanset. The operator ‘&&’ checks if there
is an overlap between each span and the measure of interest.

Finally, in the SELECT clause, the expressions at-
Time(pollutant, period) restrict the pollutant to the period
of interest, and then the aggregate function twAvg is applied.

We now further elaborate on the expressions in the WHERE
clause. We remark that these expressions are aimed at
speeding-up the query performance, taking advantage of in-
dices that MobilityDB can build over temporal types. Typi-
cally, this is the case of the computation of the functions that
project the temporal types over the value/spatial and/or time
dimensions. GiST and SP-GiST indexes can be created for
table columns of temporal types. The GiST index implements
an R-tree and the SP-GiST index implements an n-dimensional
quad-tree. The GiST and SP-GiST indices store the bounding
boxes, actually a minimum bounding rectangle (MBR), for the
temporal types. Expressions like PM1_0 && spanN(period,
1) perform the intersection between the time intervals and the
temporal value, using the index. If we do not want to force
the use of the index, in the WHERE clause we would only
write atTime(Trip, time.period) IS NOT NULL.

Indices are created as follows:

CREATE INDEX delhiTrips_trip_Idx
ON delhiTrips USING SPGist(Trip);

CREATE INDEX delhiTrips_pm1_0_Idx ON
delhiTrips USING Gist(PM1_0);

...

The next query shows how MobilityDB queries can be
used to write analytical aggregate queries à la OLAP (Online
Analytical Processing).

Query 2: Compute the average air quality at which the
bus drivers were exposed during the mornings (from 9AM
to 12PM).

This query expresses what we call a roll-up, in OLAP
jargon. To avoid redundancy, we limit ourselves to just use
PM2.5 and PM10 in the query.

WITH eachDate AS (
SELECT DISTINCT deviceid, id,

unnest(timestamps(PM2_5))::date AS dd
FROM delhiTrips
WHERE duration(PM2_5) < '12 hour'::interval),



morning AS (
SELECT deviceid, id,

span(dd+'09:00'::interval, dd+'12:00'::interval,
true, true) interval

FROM eachdate)
SELECT delhiTrips.deviceid, delhiTrips.id,

twAvg(atTime(PM2_5, morning.interval )) as PM2_5,
twAvg(atTime(PM10, morning.interval )) as PM10

FROM delhiTrips, morning
WHERE delhiTrips.deviceid = morning.deviceid AND

delhiTrips.id = morning.id AND
PM2_5 && morning.interval AND
PM10 && morning.interval

GROUP BY delhiTrips.deviceid, delhiTrips.id,
morning.interval

ORDER BY PM2_5 desc, PM10 desc

First we compute the eachdate CTE, which calculates the
date of each trip of each device. Given that the timestamps are
arrays, we use the unnest function to produce the correspond-
ing tuples. We use DISTINCT to consider the devices that span
through different dates. The morning CTE builds, for each trip
of each device, the three-hour morning intervals. The final
query computes the time-weighted averages and aggregates
them by trip and morning intervals. Figure 3 shows the result
of the query, where we can see the high level of contamination
due to these pollutants.

Fig. 3. Results for Query 2.

Our last query shows the full power of MobilityDB to
address spatiotemporal problems in a very simple and elegant
way. We first compute a grid that contains all the bus trips
(the CTE mbr below), and for each square in the grid (the
CTE grid below), we compute the average value of the PM2.5

parameter. Figure 4 shows the result in a Choropleth map.

WITH mbr AS (
SELECT ST_Transform(ST_SetSRID(ST_Extent(trajectory),

4326), 3857) as tripgeom
FROM delhiTrips),

grid AS (
SELECT (ST_SquareGrid(2500, MBR.tripgeom)).geom

AS squares
FROM mbr),

pm25 AS (
SELECT avg(PM2_5) AS pm2_5avg,

ST_Transform(grid.squares, 4326) AS gridsquares
FROM delhiInput AS pts, grid g ON

ST_Contains(ST_Transform(g.squares, 4326),
ST_Transform(pts.geom, 4326))

GROUP BY g.squares )
SELECT * FROM pm25

Query 3: We want to compute, for each bus, the total amount
of time that the bus driver has been exposed in the darker zones

Fig. 4. Grid illustrating the number of measurements.

of the PM2.5 grid. These zones have an average value between
221 and 290, which is considered as very poor quality.11

The MobilityDB query to compute this, uses the pm25 CTE
above. The query is written as:

WITH ...
pm25 AS (...),
highPolTrips AS (

SELECT deviceid, id,
atGeometry(transform(delhiTrips.trip,4326),
PM25.gridsquares) AS dangPart

FROM delhiTrips, PM25
WHERE pm2_5avg > 221 )

SELECT deviceId, id, duration(getTime(dangPart))
FROM highPolTrips
WHERE dangPart IS NOT NULL

The atGeometry function, restricts the trip to a given
geometry. Note that this is much powerful than a simple
intersection, since it computes the intersection between a
spatiotemporal trajectory and a geometry. In this case, the
geometries are the squares in the grid where the PM2.5

parameter is higher than 221 (the darker squares previously
computed). This is stored in the highPolTrips CTE. The final
query uses the MobilityDB function atTime to restrict the
intersection between each trip and the corresponding squares
(the intersections are called dangPart in the highPolTrips
CTE), to the time spans when they occurred. Then, the
MobilityDB duration function computes the sum of all the
parts of each trip occurred within the dangerous zones.

11https://www.epa.vic.gov.au/for-community/monitoring-your-environment
/about-epa-airwatch/calculate-air-quality-categories

https://www.epa.vic.gov.au/for-community/monitoring-your-environment/about-epa-airwatch/calculate-air-quality-categories
https://www.epa.vic.gov.au/for-community/monitoring-your-environment/about-epa-airwatch/calculate-air-quality-categories


VI. DISCUSSION AND CONCLUSION

We claimed throughout this paper that, using the Mobil-
ityDB database to address problems like the ones in this
paper, has many advantages over using traditional database
tools to manage and analyze the data measured by the mobile
sensors. First, since continuous data (in the delhiTrips table)
are produced from the raw data (in our example, the delhiInput
table), a query asking for temporal data type attribute, returns
a value for every point in the trajectory of the sensor, and users
do not need to care about interpolation. Further, although in the
case study, mobile sensors were placed on fixed-route buses,
in other situations domain experts may design specific routes
that cover all areas of interest, optimizing the routes.

Second, we showed that MobilityDB built-in data compres-
sion strategies result in order of magnitude reduction in the
database size. In our case, we went from 12GB in the input
data, down to less than 700MB in the delhiTrips table.

Third, queries in MobilityDB are written in a very concise
and elegant way, as shown in Section V. Below, we elaborate
on this topic, discussing the effort that writing analogous
queries in classic SQL would require.

Consider Query 1. This query uses a tstzspanset, to
restrict the analysis to specific (closed) time intervals. Then,
overlaps between these intervals and the temporal functions
are computed by using the ‘&&’ operator. In MobilityDB
it is easy to construct open, half-open and closed intervals.
However, in native PostgreSQL there is no function allowing
to express close intervals, only half-open intervals can be built.
Therefore, in SQL, to express complex time constraints we
need to build complex expressions combining equalities and
inequalities between the timestamps’ endpoints.

Query 1 also computes the parts of the pollutant continuous
evolution (not just samples like in the delhiInput table), that
lie within the interval of interest, using the function atTime.
In native PostgreSQL we would need to generate a LineString
as a sequence of pollutant values ordered by time. The points
in this linestring will be composed by pairs (pollutant-value,
number) where number is a mapping from the time instant
at which every sample was recorded, to a number (that is,
number will not be a timestamp). The following expression
sketches the idea:

SELECT ST_MakeLine(ARRAY(
SELECT ST_MakePoint(PM2_5,

CAST(EXTRACT(EPOCH from t) AS integer) )
FROM delhiInput d2 ORDER BY t)) PM2_5

Further, MobilityDB is equipped with a large toolset of
functionalities and lifting (Section III) and aggregate operators,
that make it simple to write complex queries. Queries 1 and 2
use the time-weighted average function, twAvg. Internally, this
function encodes a complex computation of weighted averages
according to the time span of each value of the variable. To
compute this in SQL, PSM functions must be coded.

Finally, MobilityDB includes GiST and SP-GiST indexes
for temporal types. The former implements an R-tree and the
latter implements an n-dimensional quad-tree. GiST and SP-

GiST indexes store the bounding box for the temporal types
and are the basis for speeding-up query performance.

Query 3 also shows how the temporal intersection between
a spatiotemporal trajectory and a geometry, is computed using
the atGeometry function. Note that this intersection is not
just the geometric intersection provided by PostGIS (which
returns a geometry), but (intuitively) the computation of this
intersection at every point in time, therefore returning a
spatiotemporal type. Due to space restrictions we omit the
details, although the reader can guess that writing this in
classic SQL would require expert SQL knowledge.

MobilityDB is in constant evolution and being applied
in many real-world cases, like air traffic control and public
transport. The problem presented in this paper opens a new
application field that can help in performing large cities
monitoring tasks at low cost.
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