
Citation: Using MobilityDB and

Grafana for Aviation Trajectory

Analysis. Preprints 2022, 1, 0.

https://doi.org/

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Submitted to Preprints for possible open

access publication under the terms and

conditions of the Creative Commons

Attri- bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceedings

Using MobilityDB and Grafana for Aviation Trajectory Analysis
Adam Broniewski 1,† , Mohammad Ismail Tirmizi 1,†,∗ , Esteban Zimányi 1 , and Mahmoud Sakr 1,2

1 Department of Computer & Decision Engineering, Université libre de Bruxelles, Belgium
{adam.broniewski, mohammad.tirmizi, esteban.zimanyi, mahmoud.sakr}@ulb.be

2 Faculty of Computer and Information Science, Ain Shams University, Egypt
* Corresponding author
† These authors contributed equally to this work.

Abstract: Air traffic management (ATM) requires handling big data of moving objects, such as flight 1

trajectories. There is, however, a lack of specialized tools for trajectory data management, where 2

the spatiotemporal data is a first class citizen. Instead, specialized algorithms for trajectory data 3

management are built on top of existing geospatial tools. In this paper, we showcase MobilityDB, 4

which is an open-source database for moving objects. MobilityDB is developed as an extension 5

to PostgreSQL and PostGIS, that specializes in storage and processing of trajectory data. Its data 6

model integrates spatiotemporal and temporal types as first class citizens in the database. It thus 7

allows to perform complex spatial and spatiotemporal queries. This paper presents how to combine 8

MobilityDB with Grafana, an open-source dashboard tool, to perform basic and advanced queries 9

and interact with the Grafana visualization. A use case for flight trajectories, based on the OpenSky 10

Network data is illustrated. 11

Keywords: Moving Objects; MobilityDB; Grafana; Open Source; Dashboard 12

1. Introduction 13

Massive amounts of aviation ADS-B trajectories are being continuously collected. 14

Platforms like OpenSky make them available to support research and development. Data 15

scientists then face the challenge of processing the collected data to extract relevant infor- 16

mation. Generally, there is a lack of established tools for movement data management and 17

analysis. 18

In this paper, we explore the potential of two open-source tools, MobilityDB and 19

Grafana, in building an integrated end-to-end platform for aviation data analysis using 20

publicly available OpenSky data. The implementation includes data loading, data process- 21

ing, exploratory data analysis, and the creation of a business intelligence dashboard with 22

visualizations of example key-performance indicators (KPIs). MobilityDB’s spatiotemporal 23

data types and functions and Grafana’s visualizations make it possible to generate efficient 24

data queries on the fly with dynamic query parameters controlled by the front-end. 25

This paper targets data scientists and developers in the aviation domain. It aims 26

to inspire the production of responsive business intelligence dashboards, with feedback 27

between the development environment and end-user experience during exploration. 28

2. MobilityDB and Grafana Overview 29

2.1. MobilityDB 30

MobilityDB [1] is a moving object database, implemented as an extension to Post- 31

greSQL and PostGIS, that introduces temporal and geospatial data types using an abstract 32

data model to represent spatiotemporal data. 33

Conventionally, data related to a single point in time is stored as a single instance (i.e., 34

a row) with separate attributes (i.e., columns) used to store the data and the timestamp. 35

Representing data that changes over time would thus use multiple instances. MobilityDB’s 36

data model uses an array of (value, timestamp) pairs to represent data changing over 37

time. For example, a temporal integer, or tint, stores a sequence of integers and the 38

corresponding timestamps, resulting in an array structure as a single value (cell) in an 39

https://doi.org/10.3390/1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-1107-9709
https://orcid.org/0000-0001-8799-0227
https://orcid.org/0000-0003-1843-5099
https://orcid.org/0000-0002-6741-8300

2 of 9

entity (table). The base data types integer and timestamps in this array are based on the 40

existing PostgreSQL data types (i.e., int and timestamptz). 41

These temporal types may be then treated as continuous functions. Redundant values 42

are removed through a lossless normalization process. The data array can thus be exploited 43

by returning not just the known discrete points, but also values between two consecutive 44

pairs using a stepwise or linear interpolation. 45

This same approach is extended to represent temporal geometry points, tgeompoint, 46

which are spatiotemporal data types that leverage the existing PostGIS geometry type. This 47

is the data type used to store an entire flight’s trajectory. MobilityDB also includes functions 48

to efficiently manipulate temporal types, such as intersect(), within(), speed() [2], and 49

tgeompoint_seq(), among others. Additional information can be found in the official 50

MobilityDB reference documents1. 51

In OpenSky data, each time point is represented as a discrete event. The example 52

below shows a sample of the data for a single flight, ANZ1220, on 2020-06-01. 53

timestamp icao24 callsign onground geoaltitude geom
2020-06-01 ... c827a6 ANZ1220 False 6256.02 0101000020E61...
2020-06-01 ... c827a6 ANZ1220 False 7002.78 0101000020E61...
2020-06-01 ... c827a6 ANZ1220 False 7132.32 0101000020E61...

54

The data is transformed into trajectories using the following SQL query. 55

1 CREATE INDEX icao24_time_index ON flights (icao24 , et_ts); 56

2 57

3 CREATE TABLE flight_anz1220_traj (icao24 , callsign , tonground , taltitude , 58

tgeom) AS 59

4 SELECT icao24 , callsign , 60

5 tbool_seq(array_agg (tbool_inst (onground , et_ts) ORDER BY et_ts) 61

6 FILTER (WHERE onground IS NOT NULL)), 62

7 tfloat_seq(array_agg (tfloat_inst (geoaltitude , et_ts) ORDER BY et_ts) 63

8 FILTER (WHERE geoaltitude IS NOT NULL)), 64

9 tgeompoint_seq(array_agg (tgeompoint_inst (geom , et_ts) ORDER BY et_ts) 65

10 FILTER (WHERE geom IS NOT NULL)) 66

11 FROM flight_anz1220 67

12 GROUP BY icao24 , callsign; 68

First, we create the composite index icao24_time_index to improve the performance 69

of trajectory generation. The SQL query creating the trajectories uses the same method to 70

create each temporal type value (tonground, taltitude, and tgeom). We explain it next 71

using the tgeom column as an example: 72

1. The first (most inner) call is tgeompoint_inst(), which combines each geometry 73

point (lat, long) with the timestamp where that point existed. 74

2. array_agg() aggregates all the instants together into a single array for the items 75

aggregated by the GROUP BY statement. In this case, it will create an array for each 76

icao24 with a particular callsign. 77

3. Finally, tgeompoint_seq() constructs the array as a sequence which can be manipu- 78

lated with MobilityDB functions. Equivalent sequence constructor functions are used 79

for other attribute data types (e.g., float uses tfloat_seq()). 80

The resulting entity contains an instance for each unique icao24-callsign combination 81

with an array for each temporal type value. 82

icao24 callsign tonground taltitude tgeom
c827a6 ANZ1220 [f@2020-06-01 05:42, [45.72@2020-06-01 05:52, [010..C0@2020-06-01 05:52,

t@2020-06-01 07:03,
t@2020-06-01 07:06] 121.92@2020-06-01 07:03] 010..2C0@2020-06-01 07:06]

83

This data representation model results in a compression of the data. For a 24-hour 84

period of flights, the data entity before trajectory generation was 2,531 MB. When the data 85

1 https://docs.mobilitydb.com/MobilityDB/master/mobilitydb-manual.pdf

https://docs.mobilitydb.com/MobilityDB/master/mobilitydb-manual.pdf

3 of 9

is transformed to temporal trajectories, where each instance represents a flight, the entity 86

size decreased to 870 MB, almost a 3:1 compression ratio. 87

2.2. Grafana 88

Grafana2 is an open-source, time-series data query, visualization and alerting tool 89

[3]. It can unify numerous data sources as it does not require loading data into the tool 90

itself. It has an active community of contributors that develop plugins for new data 91

sources and visualization tools. Grafana proves to be useful for both query development 92

as well as production-quality business intelligence dashboards that support collaborative 93

development and customization. Using a query editor, Grafana allows the user to query 94

and combine data from any connected source, create visualizations for dashboards, and 95

has an alerting function if critical thresholds are reached. 96

Grafana provides a flexible dashboard interface to manipulate data and introduce 97

dynamic variables into queries through a graphic user interface. There are some limitations 98

in Grafana’s capability to visualize geometries, which require additional data transforma- 99

tions for visualization purposes. However, it remains a significant improvement over other 100

common tools such as QGIS for spatial query development. Additionally, Grafana handles 101

time-series data very effectively. 102

2.3. Data Pipeline: Combining MobilityDB and Grafana 103

Given the choice of MobilityDB as the moving object database, it was natural to 104

identify a tool that can work alongside it to visualize the temporal and spatiotemporal 105

results. Grafana was chosen as it is also open source, is able to connect to PostgreSQL as a 106

back-end database, and is extensible. Grafana supports community developed extensions 107

in the form of JavaScript plugins, enabling the development of potentially missing features. 108

Grafana was beneficial during data exploration and query development to immedi- 109

ately visualize query results. Using multiple visualization panels, various query iterations 110

were visually compared against each other. On-the-fly query adjustments were made "post- 111

query" to fine tune the visualizations by specifying conditions using Grafana’s options 112

panel. The visualization type was selected in Grafana after query development, and query 113

visualization functioned on simple query returns without needing the use of any SQL 114

statements such as ROLLUP or CUBE. 115

A limitation of this pipeline is that currently, Grafana cannot render lines using 116

geometric coordinates. Grafana also lacks the capabilities to plot data types such as 117

geometry (from PostGIS) and tgeompoint (from MobilityDB). Instead lines are represented 118

by plotting points and heat maps, which is accomplished with an additional final step in 119

query building to unnest data from an array to discrete points. This results in an increased 120

amount of data called from the database and longer rendering times for visualizations. 121

3. Implementation 122

3.1. Data Workflow 123

The process for implementing a mobility dashboard is composed of several steps 124

described next. 125

1. Clean and Transform Data 126

OpenSky data was loaded into MobilityDB, pre-processed, and coverted into tra- 127

jectories using MobilityDB temporal types. After this one-time processing step, the 128

database was ready for analysis. Real-time analysis and loading can be accomplished 129

with a script written using an OpenSky Network API3 that pushes new state vectors 130

into the database as they arrive. 131

2. Create User Queries and Visualization Panels 132

2 https://grafana.com/
3 https://openskynetwork.github.io/opensky-api/index.html

https://grafana.com/
https://openskynetwork.github.io/opensky-api/index.html

4 of 9

SQL queries were designed with Grafana variables to make visualization dynamically 133

change with end user’s input. Grafana visualization panels were chosen and visual 134

conditions and options were set. Grafana replaces the variables in the query with user 135

selected values and pushes the query to the database. MobilityDB completes query 136

processing and returns the result of the query. 137

3. Deploy the Dashboard Responding to User Queries 138

End users can interact with the visualization and do their analysis. They can interact 139

with the data through the Grafana’s graphic user interface (GUI) without needing 140

to make changes to any SQL code. For time-specific filters the user clicks through 141

time-advancement options and Grafana updates the SQL query and retrieves new 142

data for visualizations. For real-time monitoring, users can specify the query refresh 143

interval as well. 144

3.2. Building SQL Queries 145

The dataset used contains flight information over a 24-hour period from OpenSky 146

Network4. Each row of raw data represents the attributes at a unique point in time for a 147

particular airframe (i.e., airplane), and is identified by the attribute icao24. Each row also 148

includes an attribute callsign, which is the unique flight identifier assigned by an airline. 149

The methodology and functions used in each query are explained to highlight the unique 150

aspects of MobilityDB and Grafana. 151

The queries cover the following: 152

• Querying Discrete Points: queries and visualizations without temporal datatypes 153

• Creating Flight Trajectories: creating and slicing trajectories 154

• Querying Flight Trajectories: using trajectories with moving object functions 155

3.2.1. Querying Discrete Points 156

Query 1: What is the flight path of a single airframe over a user-defined time period? 157

1 SELECT et_ts , icao24 , lat , lon 158

2 FROM flights TABLESAMPLE SYSTEM (5) -- returns only 5% of queried data 159

3 WHERE icao24 IN (’738286 ’) AND $__timeFilter(et_ts) 160

The global variable $__timeFilter() is used on et_ts (the timestamp value) to create 161

a query that can by updated dynamically by the dashboard user through Grafana’s user 162

interface. Grafana is not currently able to natively visualize trajectories as vectors. The 163

TABLESAMPLE SYSTEM () PostgreSQL function is used to return approximately 5% of the 164

results to reduce the number of discrete points along the trajectory path to return (Figure 1). 165

This is done to improve overall performance without sacrificing the ability to visualize the 166

data. 167

Figure 1. Visualization of single airframe location in GeoMap panel using discrete points

Query 2: What is the altitude and ground speed of flight TRA051? 168

4 https://opensky-network.org/data/datasets

https://opensky-network.org/data/datasets

5 of 9

This query is used to explore some of the differences between the Traffic library and 169

the combination of MobilityDB and Grafana. 170

Traffic [4] is a Python library that provides numerous functions for flight related 171

analysis and API calls that integrate with OpenSky data. On the other hand, MobilityDB 172

and Grafana are used together for providing value in a few key areas: 173

• Data analysis using trajectories 174

• Improving query development experience 175

• Dashboard generation for business intelligence 176

The above query can be implemented as follows using the Traffic library (Figure 2). 177

1 with plt.style.context("traffic"): 178

2 fig , ax = plt.subplots(figsize =(10, 7)) 179

3 (belevingsvlucht 180

4 .between("2018 -05 -30 19:00", "2018 -05 -30 20:00") 181

5 .plot_time(182

6 ax=ax , 183

7 y=["altitude", "groundspeed"], 184

8 secondary_y =["groundspeed"])) 185

9 ax.set_xlabel("") 186

10 ax.tick_params(axis=’x’, labelrotation =0) 187

11 ax.xaxis.set_major_formatter(DateFormatter("%H:%M")) 188

Notice that belevingsvlucht is a flight type structure containing flight TRA051. 189

Figure 2. Multiple variables displayed in dual axis plot with traffic library

The same query in MobilityDB is shown next. 190

1 SELECT et_ts AS "time", velocity -- Query A 191

2 FROM flights 192

3 WHERE icao24 = ’c827a6 ’ AND callsign=’TRA051 ’ AND $__timeFilter(et_ts) 193

4 194

5 SELECT et_ts AS "time", geoaltitude -- Query B 195

6 FROM flights 196

7 WHERE icao24 = ’c827a6 ’ AND callsign=’TRA051 ’ AND $__timeFilter(et_ts) 197

The results of separate queries are combined together in Grafana to show different 198

parameters in the same visualization panel (Figure 3). This query can be further extended 199

by creating a user-defined variable to replace icao24=’c827a6’, allowing the dashboard 200

user to select different (or multiple) airframes from a list in Grafana. 201

6 of 9

Figure 3. Interactive graph of velocity and altitude with tooltips on mouse hover

We compare the code and visualization of both approaches. 202

1. Traffic is written in Python, MobilityDB uses SQL (PostgreSQL dialect). 203

2. Traffic loads all data into memory for computation (as it is a Python library). Datasets 204

larger than memory can be handled in Python, but need functionality not present by 205

default. MobilityDB is a database so it has capabilities to handle datasets much larger 206

then the memory size. 207

3. Visualization options are coded into traffic before run time, Grafana uses a GUI to 208

manipulate both visualization options and post-processing filters. 209

4. Traffic provides a static plot (e.g., zoom requires code change). Grafana includes user 210

tooltips on mouse hover and dynamic result filtering through GUI selections. 211

3.2.2. Creating Flight Trajectories 212

MobilityDB datatypes are used to segment the 24-hour airframe trajectories (in tempo- 213

ral columns) based on the time period of when the airframe’s callsign changes to create 214

trajectories for each flight. This generic approach is used whenever there is a need to split 215

one trajectory by the inflection points of a value in time of some other trajectory. 216

Note that in this case study, a single airplane can complete the same flight path more 217

than once in a 24-hour period. A simple GROUP BY icao24, callsign statement would 218

not be sufficient and the use of additional context specific conditions such as vertical rate 219

changes or where altitude is 0 would suffer from noise in the data. The incorrect approach 220

would result in two or more distinct flights where the airframe and flight number are the 221

same being included in a single temporal trajectory. 222

1 CREATE TABLE flight_traj (icao24 , callsign , flight_period , trip , velocity , 223

2 vertrate , geoaltitude) AS 224

3 WITH airframe_callsign_period AS (225

4 SELECT icao24 , trip , velocity , vertrate , geoaltitude , 226

5 startValue(unnest(segments(callsign))) AS start_callsign , 227

6 unnest(segments(callsign)):: period AS callsign_period 228

7 FROM airframe_traj) 229

8 SELECT icao24 , callsign , start_callsign , 230

9 callsign_period AS flight_period , 231

10 atPeriod(trip , callsign_period) AS trip , 232

11 atPeriod(velocity , callsign_period) AS velocity , 233

12 atPeriod(vertrate , callsign_period) AS vertrate , 234

13 atPeriod(geoaltitude , callsign_period) AS geoaltitude 235

14 FROM airframe_callsign_period; 236

The airframe_callsign_period table provides the start and end timestamps that 237

will be used to "slice" the other temporal sequences in the airframe trajectory. The function 238

segments(callsign) returns an array of beginning and ending timestamps for when a 239

callsign exists for an airframe. Function unnest() is used to expand the segment array, 240

and each value is cast to a period that is used in the main query. Function atPeriod() 241

creates new temporal sequences that have a start and end timestamp corresponding to 242

callsign_period. This transformation takes place only once, when loading new data into 243

the MobilityDB database; the trajectories are then used directly to query flight specific 244

statistics in Grafana. 245

7 of 9

3.2.3. Querying Flight Trajectories 246

Query 3: What is the average velocity of each flight? 247

1 SELECT callsign ,twavg(velocity) AS average_velocity 248

2 FROM flight_traj 249

3 WHERE twavg(velocity) IS NOT NULL AND twavg(velocity) < 1500 250

4 ORDER BY twavg(velocity) DESC; 251

The twavg() function, which returns a time-weighted average, can be called directly 252

on the temporal float data of each flight trajectory. Error-checking steps and filters such as 253

removing trajectories with missing velocities or incorrect velocity values will reduce the 254

amount of data returned from the database, improving dashboard performance. 255

Grafana is used for post-processing, with some modifications to the axis to highlight 256

the resolution of higher ranges (Figure 4). If only the "top 10" results are needed, the SQL 257

query should be modified to return fewer results rather than post-processing in Grafana. 258

Figure 4. Average flight velocity from highest to lowest

3.2.4. Dynamic Variables and Visualizing Beyond Three Dimensions 259

Query 4: For all flights taking off at any given time, how did the vertical ascent rate change over 260

the course of takeoff? 261

1 WITH 262

2 flight_traj (icao24 , callsign , t_trp , t_alt , t_vrt) AS (263

3 SELECT icao24 , callsign , 264

4 atPeriod(trip , period ’[$__from:date , $__to:date)’), 265

5 atPeriod(geoaltitude , period ’[$__from:date , $__to:date)’), 266

6 atPeriod(vertrate , period ’[$__from:date , $__to:date)’) 267

7 FROM flight_traj_sample TABLESAMPLE SYSTEM (20)), 268

8 flight_traj_asc(icao24 , callsign , asc_trip , asc_altitude , asc_vrate) AS (269

9 SELECT icao24 , callsign , 270

10 atPeriod(t_trp , period(sequenceN(atRange(t_vrt , floatrange ’[1,20]’) ,1))), 271

11 atPeriod(t_alt , period(sequenceN(atRange(t_vrt , floatrange ’[1,20]’) ,1))), 272

12 atPeriod(t_vrt , period(sequenceN(atRange(t_vrt , floatrange ’[1,20]’) ,1))) 273

13 FROM flight_traj), 274

14 final_output AS (275

15 SELECT icao24 , callsign , 276

16 getValue(unnest(instants(asc_altitude))) AS altitude , 277

17 getValue(unnest(instants(asc_vrate))) AS vertrate , 278

18 ST_X(getValue(unnest(instants(asc_trip)))) AS lon , 279

19 ST_Y(getValue(unnest(instants(asc_trip)))) AS lat 280

20 FROM flight_traj_asc) 281

21 SELECT * 282

22 FROM final_output 283

23 WHERE vertrate IS NOT NULL AND altitude IS NOT NULL; 284

The Grafana global variables $__from:date and $__to:date are used to allow user in- 285

puts in the Grafana GUI. The flight_traj_asc table returns the period of the first sequence 286

of each flight. This is done using atRange() to clip the temporal data to create ranges where 287

vertrate is between [1, 20], which represents an ascending airframe. Function sequenceN 288

selects the first of the generated sequences, which is takeoff, the first period an airframe 289

8 of 9

Figure 5. Vertical ascent rate changing over time
during take off

Figure 6. Several trajectories with multiple param-
eters visualized concurrently in Grafana

ascends. Function atPeriod is used to return the period (start and end timestamp) of the 290

takeoff sequence. For visualization purposes, the sequence arrays are unpacked in the 291

final_output table using unnest(), which provides a series of discrete points that can be 292

visualized in Grafana. In Grafana, adjustments are made to have the marker size reflect 293

altitude and the color represent vertical ascent rate (Figures 5 and 6). A manual override is 294

added for the minimum and maximum vertrate values to make large values more visible. 295

The results have a filter set on a per airframe basis, where a single airframe shows a short 296

increased vertical ascent rate towards the end of the ascent period. 297

Multiple air frames can be visualized concurrently. It is important to manage the 298

amount of data points being returned or be cognisant of global variable limits, as the user 299

can select a large time frame returning more data than the dashboard designer anticipated. 300

Query 5: How much airplane traffic is there at Amsterdam at any given time in the day? 301

1 WITH 302

2 Amsterdam(holl_land) AS (303

3 SELECT ST_MakeEnvelope (3.409884 , 51.246014 , 7.103755 , 52.680961 , 4326)), 304

4 -- Clip all temporal columns to the user -specified time range. 305

5 flight_traj_time_slice (icao24 , callsign , time_slice_trip) AS (306

6 SELECT icao24 ,callsign , 307

7 atPeriod(trip , period ’[${__from:date}, ${__to:date})’) 308

8 FROM flight_traj TABLESAMPLE SYSTEM (70)), 309

9 -- Clip all the result that are outside the specified window. 310

10 clipped_flight AS (311

11 SELECT icao24 , callsign , time_slice_trip 312

12 FROM flight_traj_time_slice temp1 , Amsterdam region 313

13 WHERE intersects(temp1.time_slice_trip , region.holl_land)) 314

14 SELECT 315

15 icao24 , callsign , 316

16 getTimestamp (unnest(instants(time_slice_trip))) AS et, 317

17 ST_Y(getValue(unnest(instants(time_slice_trip)))) AS lat , 318

18 ST_X(getValue(unnest(instants(time_slice_trip)))) AS lon 319

19 FROM clipped_flight; 320

Functions atPeriod() and intersect() are used to slice through time and geographic 321

areas. The query returns any trajectory that intersects with the region above Amsterdam. 322

Figure 7 shows that on 2020-06-01 from 10h00 to 11h00 there is minimal air activity over 323

the region, while from 11h00 to 12h00 the airspace is much busier. Exploring hours and 324

days visually makes it possible to observe how the occupation of the airspace changes 325

throughout the day. The traffic library does not have the ability to slice through user 326

defined areas, although it does have the ability to import predefined airport areas [5]. 327

9 of 9

Figure 7. Heat map of Amsterdam air traffic from 10h00 to 11h00 (low traffic, top) and from 11h00 to
12h00 (high traffic, bottom)

4. Conclusions and Future Work 328

This paper presented technology that can be used in an end-to-end platform for 329

storing, querying, analyzing, and visualizing flight trajectories. MobilityDB, an open-source 330

moving object database, was used as an efficient data management platform. Grafana, 331

an open-source dashboard, was used for interactive spatiotemporal visual analytics. We 332

demonstrated connecting MobilityDB and Grafana to build an air traffic dashboard. Several 333

examples of queries have been presented to showcase the utility of the proposed technology 334

combination. 335

At the moment MobilityDB is a generic trajectory database, not specialized to specific 336

types of trajectories (e.g., vehicles, ships, aircraft). With these promising results, future work 337

would extend MobilityDB with aircraft-specific analysis functions. Additionally, extending 338

Grafana to visualize trajectories in vector format would have a significant improvement in 339

performance and consistency when working with big data. 340

References 341

342

1. Zimányi, E.; Sakr, M.; Lesuisse, A. MobilityDB: A Mobility Database Based on PostgreSQL and 343

PostGIS. ACM Transactions on Database Systems 2020, 45. https://doi.org/10.1145/3406534. 344

2. Godfrid, J.; Radnic, P.; Vaisman, A.; Zimányi, E. Analyzing public transport in the city of Buenos 345

Aires with MobilityDB. Public Transport 2022, pp. 1–35. 346

3. Venkatramulu, S.; Phridviraj, M.; Srinivas, C.; Rao, V.C.S. Implementation of Grafana as open 347

source visualization and query processing platform for data scientists and researchers. Materials 348

Today: Proceedings 2021. https://doi.org/10.1016/j.matpr.2021.03.364. 349

4. Olive, X. traffic, a toolbox for processing and analysing air traffic data. Journal of Open Source 350

Software 2019, 4. https://doi.org/10.21105/joss.01518. 351

5. Olive, X.; Basora, L. A Python Toolbox for Processing Air Traffic Data: A Use Case with 352

Trajectory Clustering. In Proceedings of the 7th OpenSky Workshop 2019. EasyChair, 2019, 353

EPiC Series in Computing, pp. 73–84. https://doi.org/10.29007/sf1f. 354

https://doi.org/10.1145/3406534
https://doi.org/10.1016/j.matpr.2021.03.364
https://doi.org/10.21105/joss.01518
https://doi.org/10.29007/sf1f

	Introduction
	MobilityDB and Grafana Overview
	MobilityDB
	Grafana
	Data Pipeline: Combining MobilityDB and Grafana

	Implementation
	Data Workflow
	Building SQL Queries
	Querying Discrete Points
	Creating Flight Trajectories
	Querying Flight Trajectories
	Dynamic Variables and Visualizing Beyond Three Dimensions

	Conclusions and Future Work
	References

