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ABSTRACT

Nowadays, the collection of moving object data is significantly
increasing due to the ubiquity of GPS-enabled devices. Managing
and analyzing this kind of data is crucial in many application do-
mains, including social mobility, pandemics, and transportation. In
previous work, we have proposed the MobilityDB moving object
database system. It is a production-ready system, that is built on top
of PostgreSQL and PostGIS. It accepts SQL queries and offers most
of the common spatiotemporal types and operations. In this paper,
to address the scalability requirement of big data, we provide an
architecture and an implementation of a distributed moving object
database system based on MobilityDB. More specifically, we define:
(1) an architecture for deploying a distributed MobilityDB database
on a cluster using readily available tools, (2) two alternative trajec-
tory data partitioning and index partitioning methods, and (3) a
query optimizer that is capable of distributing spatiotemporal SQL
queries over multiple MobilityDB instances. The overall outcome
is that the cluster is managed in SQL at the run-time and that the
user queries are transparently distributed and executed. This is val-
idated with experiments using a real dataset, which also compares
MobilityDB with other relevant systems.
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1 INTRODUCTION

Due to the explosive spread of GPS-enabled devices and the popular
use of cell phones, trajectory data sizes grow quickly. Spatiotempo-
ral query serves as a basis of many services, of which processing
efficiency is the key factor of the application utility. Therefore, pro-
viding scalable spatiotemporal query methods is one of the research
hot spots for trajectory information processing.

MobilityDB [16] is a moving object DBMS particularly geared
for managing the spatiotemporal trajectory data. It extends Post-
greSQL and PostGIS with temporal and spatiotemporal database
types. For instance, temporal point (tgeompoint) is used to repre-
sent the movement in time of a geometry point object, e.g., a vehicle.
For representing its speed over time, the temporal float (tfloat) is
used. Besides the temporal types, MobilityDB provides time types
to represent the time dimension such as timestamp, timestampset,
period, and periodset. The types are supported by index access
methods including GiST (which is R-tree) and SP-GiST (which is an
Oct-tree). MobilityDB implements more than 300 functions includ-
ing distance, spatiotemporal joins, lifted operations, and temporal
aggregates (more details in the Appendix). The query interface is
SQL. It thus includes a query planner and optimizer. The binaries,
source code, and manuals are all open sourcel.

Towards addressing the challenges posed by the big trajectory
data, this paper proposes a distributed version of MobilityDB.

Data Distribution Challenge. There are several challenges
due to the nature of the big datasets. Some of them contain trajec-
tories covering most of the space and time. To partition this data,
the trajectory might fall into a large group of partitions, which
requires either duplicating the trajectory or splitting it into pieces.
The former is more straightforward in the query processing but
would increase the data size, and the networking cost. The latter, on
the other hand, is more efficient in terms of storage and networking,
but would require to reconstruct the trajectories at the run time.
Another challenge is the data skew in space, time or both. The
partitioning method must adapt to the dataset characteristics[4]
(e.g., its distribution) and the analysis of its dimensions[8].

Query Distribution Challenge. The goal is to keep the dis-
tribution transparent to users. So users should expect to write
regular SQL queries as in the non-distributed environment. The
query planner needs to be extended by understanding the seman-
tics of spatiotemporal types and operations, and with methods to
distribute them.

This paper addresses both challenges, and contributes the fol-
lowing;:

!https://github.com/MobilityDB/MobilityDB
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e An architecture for a distributed SQL moving object database
system.

e A distribution manager for transparently distributing user SQL
queries.

o Supporting the common query types in the literature in an SQL
database environment.

e A working implementation in the MobilityDB system.

The rest of this paper is organized as follows. Section 2 reviews
the most related work from different platforms. Section 3 explains
an architecture for deploying a distributed MobilityDB database
on a cluster. Section 4 shows the components of the distributed
storage module. For the query processing, Section 5 provides a
complete picture starting from writing the query until the query ex-
ecution. Section 6 evaluates the performance with a comprehensive
experiments with different aspects. Extra illustrations and support
material is given in the Appendix.

2 RELATED WORK

This section reviews the related work in the field of big trajectory
data management.

Hadoop-based Systems. Summit [1] provides a trajectory data
management on top of Hadoop. It supports hierarchical partitioning:
temporal followed by spatial. The temporal partitioning is based on
the time granularity and the user has to decide. The spatiotemporal
points inside each temporal partition are indexed, either spatial-
based or segmentation-based. Summit does not support the notion
of interpolation. A trajectory is thus a set of spatiotemporal points.
It supports three main query types: spatiotemporal range, join
query, and kNN query. It also provides operations such as overlaps
and trajectory similarity. Following the same approach of segment-
ing the trajectory, the work in [12] proposes an algorithm, called
DTJb, where it manages the subtrajectory join query processing in
two MapReduce phases. The trajectory data is partitioned into tem-
poral partitions. A quadtree is used to partition the data spatially
inside each temporal partition. Three query types are supported:
trajectory, range, and join queries.

In contrast, HadoopTrajectory [3] provides a distributed query
processing on continuous trajectories. It extends Hadoop with mov-
ing objects types and operations[2]. The types are supported by
global and local indexes. The grid and R-tree are used to partition
the trajectory data. The full trajectory is stored in one partition and
is supported by spatiotemporal filter predicates such as overlaps.
HadoopTrajectory provides three query types: trajectory, range and
join queries. These queries are supported by trajectory processing
operators in the MapReduce layer such as length, passes, and speed.

Spark-based Systems. TrajSpark [15] is a spark-based system
for in-memory trajectory processing. It proposes two RDD exten-
sions for managing trajectory segments. That is, the trajectory data
points are partitioned into separate partitions according to their
spatiotemporal information. These RDDs are supported by global
and local index methods for improving search performance. Three
main queries are proposed: single-object query, spatiotemporal-
based range query, and kNN query. These queries are supported
by operations such as overlaps and intersects. For the trajectory
query (i.e., single-object query, the trajectory data for a specific
object is collected from partitions using the object identifier and
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specific time range. UI'TrajMan [5] is also a spark-based extension
for managing big trajectory data. It partitions the trajectory data
using the STRPartitioner method. The system employees global
and local indexing. In addition, it supports querying by trajectory
identifier, range-query, and kNN query. UITrajMan supports trajec-
tory operations such as distance and intersects. Dita [11] proposes
a pivoting strategy for partitioning the trajectory data. An index,
called trielndex, is used as a global and local index. The index is
built using the first, last, and pivot points of each trajectory. Four
query types are supported: trajectory-ID query, range query, join
query, and kNN query.

NoSQL-based Systems. TrajMesa [6] proposes a horizontal
storage schema in H-store, where each trajectory is stored in one
row. Additional columns are added to store the trajectory iden-
tifier and its spatiotemporal box. The data is indexed using two
methods: the XZT method which is a temporal index and the XZ2
method which is a spatial index. It provides four query types: ID-
temporal query, spatial range query, kNN query, and similarity
query. THBase [9] provides a subtrajectory data management. It
uses a hybrid grid structure for indexing the spatiotemporal infor-
mation of all trajectories. The index consists of two levels: the first
level is a time period index and the second level is a spatial index
using the quadtree The querying part supports: query by identifier,
spatiotemporal range query, and kNN query.

Moving Object Database. SECONDO Distributed2Algebra [10]
provides a set of functions for distributing data and queries across
multiple SECONDO instances. One of the instances is used as a
coordinator for partitioning and querying. The data distribution can
be done using one of two partitioning types: object identifier (e.g.,
hash and range), and spatiotemporal partitioning (e.g., grid). For
the grid partitioning, the trajectory is replicated in all overlapping
grid cells. It provides querying such as spatiotemporal range query,
join query, and trajectory query.

There are some other systems such as SharkDB [13] which pro-
vides a column-oriented trajectory data storage and in-memory
processing. It proposes a time frame-based structure for storing
the trajectory points into a number of frames. Each frame can be
for one minute. Furthermore, the frames are compressed using the
I/P frame encoding. SharkDB supports two main queries: window
query and kNN query. The window query must include the time
interval for better utilization of the frame-based structure. Y. Zheng
in [7] proposes a cloud-based trajectory query processing frame-
work based on Microsoft Azure. The trajectory data is stored in
two locations. Azure table is used for storing the full trajectory,
where each trajectory is distinguished by its ID. Azure Redis, which
is a key-value store, is used to store the index. The index is built
using a table-based suffix tree method that is based on the results
of the map-matching algorithm. Two main queries are provided:
trajectory-ID query and range query.

All the previous systems require an effort from the user to under-
stand how to manage the queries. Moreover, most of these systems
support limited trajectory operations. For more operations such as
the trajectory length and speed, the user needs to write a complete
MapReduce program to implement them. In addition, the distri-
bution in SECONDO is not declarative. Therefore, this paper tries
to fill these gaps between the user and the distributed systems by
providing a distributed trajectory query processing in SQL.
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3 SYSTEM OVERVIEW

The distributed MobilityDB database architecture is illustrated in
Figure 1. It consists of a cluster of MobilityDB instances (also called
nodes in the sequel), where one of them acts as the coordinator.
A MobilityDB instance is a PostgreSQL database, that has both
PostGIS and MobilityDB extensions installed. One physical machine
might thus host multiple MobilityDB instances?. The coordinator
has an additional extension called the distribution manager, which is
the core proposal of this paper. The other nodes, called workers, are
regular MobilityDB instances. They do not actually know that they
are part of a distributed cluster. This means that besides their role
as workers in the distributed cluster, they may be independently
serving other DB clients. All the distribution logic is thus performed
by the distribution manager in the coordinator node.

Distribution Manager
MobilityDB
PostGIS
PostgreSQL

Meta data

Worker 2

MobilityDB
PostGIS
PostgreSQL

[Fet2] [17]rs] s

MobilityDB
PostGIS
PostgreSQL

MobilityDB
PostGIS
PostgreSQL

] D@

Figure 1: System Architecture

The coordinator maintains a catalogue of metadata about the
cluster structure, and the logical and physical data partitions. The
physical storage of data occurs in the worker nodes. A worker node
would thus store, as database tables, partitions of the big tables,
replicas of partitions that are stored in other worker nodes, and
replicas of smaller reference tables.

Figure 2 gives a high level overview of the components of the
distribution manager, which are briefly described as follows:

Distributed Storage. (Section 4) Storage is organized accord-
ing to one of the proposed trajectory data partitioning methods.
To partition a table, the distribution manager creates the same ta-
ble schema in the coordinator and in all workers. The coordinator
remains empty, and the data is distributed over the tables in the
workers. The metadata about each partition is stored in the meta-
data catalog. In addition, it is possible to build a local index (R-tree,
Oct-tree, or B-tree), where every worker nodes indexes only its
objects. This is all realized by SQL functions that are defined in the
distribution manager.

Distributed Query Processing. (Section 5) It is a pipeline of
four main components: (1) A query parser for identifying query
elements such as distributed table, replicated tables, spatiotempo-
ral types (e.g.,tpoint), predicates (e.g.,overlaps, contains), and
functions (e.g.,length, atGeometry); (2) A query designator that

?Hosting multiple MobilityDB instances on a single machine might not be optimal
w.r.t performance. The performance depends on factors like how the disk storage is
organized, and the number of available cores.
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analyzes the query and the catalogue, and selects the workers that
will be invoked during the query execution; (3) A query planner for
generating a distributed query plan, according to the query predi-
cates; and (4) Multiple query executors for tracking the execution of
the distributed plan in workers, deal with node failures, and collects
the results.

{ Range Query - Broadcast-Join Query - Trajectory Query - kNN Query }

!

Distributed Query Processing

Query Parser ] [ Query Designator }

Query Planner } { Query Executor }

Distributed Storage

Partitioning Methods Catalog Local Indexes
Multidimensional Tiling - Hierarchical Management (GiST - SP-GiST)

[ Distributed MobilityDB

Figure 2: Distribution Manager

4 DISTRIBUTED STORAGE

Given a big trajectory table, data partitioning is critical for effi-
ciently processing the query. The goal of the partitioning is three-
fold. Firstly it is desired that the partitions have similar sizes, in
order to balance the load over the worker nodes. Secondly, it is de-
sired to maintain the spatiotemporal proximity between the objects
in a partition. This is specially critical to the performance of spa-
tiotemporal joins. Finally, it is required to minimize the amount of
data copying in case the partitioning needs to duplicate the data in
multiple partitions. In other words, if the total data size is d, and the
number of the workers is w, we want to produce w partitions, each
of which has a size close to %, where the spatiotemporal extent of
every partition is minimal.

Using own analysis, and the survey of literature, we could iden-
tify two main approaches of partitioning: hierarchical and multidi-
mensional tiling. In hierarchical partitioning, first the spatial extent
is partitioned then the temporal extent or the other way around.
The latter proved more effective in the literature, e.g., [1, 12]. Mul-
tidimensional tiling partitions the n-dimensional space into grid
tiles, and assigns the data objects to them, e.g., [14].

In the following, we elaborate the two methods of partitioning.
The following schema will be used for illustration in the rest of the
paper. The trips table is the one to be distributed, and it has the
trip attribute of type temporal point. The other two are smaller
reference tables that will be replicated on all worker nodes.

trips<tripId:int primary key, trip:tpoint>
streets<id:int, geom:geometry>
periods<id:int, timePeriod: period>
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4.1 Hierarchical Partitioning

We use two levels of partitioning: a temporal one followed by a
spatial one. In the temporal partitioning, the time extent of the
dataset is split into equi-sized intervals. Trajectories are copied
into all temporal partitions that overlap their time extent. Inside
every temporal partition, a quadtree is employed to partition the
data spatially. It is desired that the partition resulting from the two
steps is fine enough, that the parts are smaller than the desired
partition size, i.e., < % Beyond this requirement, the number of
temporal partitions and the parameters of the quadtree are not of
big importance. For example, it would be reasonable that the overall
number of splits is around 10x the number of workers. After that,
the parts in every temporal partition are z-ordered, and distributed
over the final partitions in a balanced way. This is iteratively done
for every temporal partition. The result is that one data partition
is compiled per worker node, where all partitions have similar
sizes. This partitioning algorithm is implemented in the distribution
manager as an SQL user function, as follows:

SELECT create_hierarchical_partitions(trips, trip);

For the reference tables, typically small sized, we want to replicate
them on all workers:

SELECT create_reference_table(streets);
SELECT create_reference_table(periods);

4.2 Multidimensional Tiling

Hierarchical partitioning works well when the data has some tem-
poral density patterns. For example, car movement will be more
dense during day, and less during night, so the temporal partition-
ing would be at the day granularity. For the more general case,
where such a pattern can not be assumed, multidimensional tiling
can adapt more to the spatiotemporal distribution of the data. Given
a three or four dimensional trajectory dataset, respectively a three-
or four-dimensional grid tiles are constructed to cover the whole
data extent. Again it is desired that the size of every tile is smaller
than the partition size.

One trajectory may overlap multiple grid tiles. Unlike hierar-
chical partitioning which would copy the trajectory in every over-
lapped partition, we split the trajectories at the tile boundaries. So if
a trajectory overlaps three tiles, it will be split into three segments,
and each tile will only store its respective segment.

Algorithm 1 shows the construction of the grid tiles. The first
step (Lines 1-3) initializes some variables. Here, G is level 0 of the
grid which contains the spatiotemporal extent of the trajectory
dataset; d is the number of dimensions; m is the total number of
executors in the workers; 7 is the maximum number of points
for all trajectories inside each grid tile. Lines 6-13 examine the
number of trajectory points inside each grid tile. If it exceeds the
threshold, we further split the tile into equi-sized 29 tiles. Then the
trajectory segments are re-partitioned into sub-segments according
to the spatiotemporal boundaries of the new grid tiles. Each sub-
segment is assigned to exactly one tile. We recursively do this step
until all tiles will contain less trajectory points than the threshold.
The grid tiles are assigned Z-order codes, to speed up the merging
process. Then, we apply an adaptive grouping method. The goal is to
generate similar sized partitions from the grid tiles while preserving
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Figure 3: Merge grid tiles

spatial proximity of objects in one partition. The algorithm outputs
a number of tiles that is greater than the number of workers.

Algorithm 1: Multidimensional Tiles

Input :Trajectory Dataset D

Output: A list of disjoint tiles G = {Gy, G, ..., G, } of D, where
D = Data(Gy)U Data(Gy) U ... U Data(Gy)

G « Extent(D)

d «— Dim(G) /* either 3 (x,y,t) or 4 (x,y,zt) */

3 m < numExecutors()

[

)

4 7 < numPoints(D)/m

5 /* Segmentation Phase */

do

foreach unchecked grid tile g € G do

if numPoints(g) > 7 then

Divide the grid tile into 2¢ tiles and partition
trajectories T into segments: Tsy, Ts2, ..., Tk
according to the spatiotemporal bounds of the new
grid tiles G;

o ® N 9

10 if Ty is within the grid tile G; then

1 /* Assign the trajectory segment to the tile */

12 G; «— Tsk

13 G; < Mark the grid tile as a checked tile

14 Timax < Get the max number of trajectory points in the tiles

15 while Ty 0 > 7

16 /* Encoding Phase */

17 Encode grid tiles in G with SFC(Z-curve)
18 Output <« G

Algorithm 2 merges the grid tiles of the previous algorithm. The
output is a list of spatiotemporal partitions that are less than or
equal the number of parallel workers on the cluster. Line 1 adjusts
to tile capacity after each iteration. For each pair of tiles (Lines
4-10) try to merge them under the conditions: (1) the two tiles share
one face. For example, if the data has three dimensions, each face
can be represented using two dimensions (i.e StBox(x1,y1,x2,y2),
StBox(x1,t1,x2,t2), or StBox(y1,t1,y1,t2) ), (2) the total number of
segment points does not exceed the threshold, and (3) none of the
two tiles are used in the previous iterations. As shown in Figure 3,
we do not merge tiles that share a point (a) or an edge (b) because the
object moves in at least two dimensions. Therefore, we do merging if
both tiles share a face as in (c). Checking if two tiles share common



Distributed Spatiotemporal Trajectory Query Processing in SQL

Algorithm 2: Merge Grid Tiles

Input :Gridtiles G = {Gy, Gy, ..., Gp }, Total number of points
per tile 7, Maximum number of partitions m

Output: A list of disjoint spatiotemporal partitions
S={5,5 ....,Sm}of D,where D =S;US,U...US,,
1 Tinc < avgNumOfPointsPerTile(G)
while numTiles(G) > m do

X

3 mergedTiles = an empty list

4 foreach grid tile g1 € G, g2 € G do

5 if Pair(g1,92) share one face & numPoints(Pair(g1,g2)) <

7 & One of the two tiles ¢ mergedTiles then

6 Expand the bbox of g1 to fill the data of both tiles

7 gl « Merge(Trajs(g1), Trajs(g2))

8 mergedTiles_i < g1, g2

9 /* Increase the threshold and do another round */
10 T T+ Tipc

11 Output « DataPartitions(G)

face is done using their Z-order codes, which is more efficient
than computing their topological relationships. The segments are
collected from both tiles and merged for each trajectory, then stored
in the resulting tile. Line 3-9 are repeated as long as the number of
tiles is greater than the number of workers.

This partitioning is defined as an SQL user function, as follows:

SELECT create_MDTile_partitions(trips, trip);

4.3 Local Index

Because the partitions are regular database tables in the worker
nodes, every worker can build own indexes on its partition. Mo-
bilityDB supports three index types for spatiotemporal attributes:
generalized search tree (GiST), space partitioning GiST (SP-GiST),
and an R-tree for equality comparisons. The distribution manager,
transparently to the user, distributes the CREATE INDEX SQL state-
ment on distributed table to the worker nodes, so that each of them
will create a local index.

4.4 Catalog Management

The distribution manager uses the catalogue to store metadata about
the cluster nodes, distributed/replicated tables, partitions, and filter-
ing predicates. This information helps the planner to distribute and
optimize user queries. In the cluster nodes, we store the capability
information for each node. For the distributed/replicated tables,
we store the partitioning method information and statistics about
each table such as the extent and number of partitions. Regarding
the partitions information, we store data such as the node number
and spatiotemporal box. Finally, we store the filtering predicates to
be used by the spatiotemporal filter that are described in detail in
Section 5.2.

5 DISTRIBUTED QUERY PROCESSING

The distribution manager is implemented as a wrapper around the
standard PostgreSQL planner. It receives the user query, passes it
to the standard parser, enriches the parse tree with tags from the
distribution catalogue, designates the worker nodes that need to be
invoked, produces the distributed plan, monitors the execution, and
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produces the final result. Currently the following classes of queries
can be distributed, with the intention to support more types in the
future.

e Range Query. It retrieves the trajectories that overlap a given
query range. The range can be spatial, temporal, or spatiotempo-
ral, for example:

—_

SELECT tripId FROM trips
WHERE intersects(trip, 'Polygon((...))"') AND
3 trip && period '[2012-01-01, 2012-01-05)"'

N

The where clause contains two range predicates: the intersects
predicate checks whether the spatiotemporal trip attribute ever
intersects a given polygon region, i.e., a spatial range. The second
predicate checks the temporal overlapping between the bounding
box of the trip attribute and a given time period. In Section 5.5,
the distributed execution plans for this query and the following
ones will be discussed.

Broadcast Join Query. It joins a distributed table with one or
more reference tables, for example:

SELECT S.id, T.tripId

FROM trips T, streets S, periods P

WHERE intersects(T.trip, S.geom) AND
T.trip && P.timePeriod

RIS OIS,

This query joins the distributed trips table with the two reference
(i.e., replicated) tables streets and periods, based on their spatial
and temporal intersection respectively.

e Trajectory Query. It is a query that retrieves a trajectory object
by its identifier or by another attribute filter, for example:

1 SELECT tripId, trip

2 FROM trips

3 WHERE tripId in (1, 2, 10, ...) AND
4

speed(trip) ?> 25

This query returns the trips in a given set of identifiers, if their
speed has ever equal been greater than 25 m/s (? > 25). The
challenge in this query is that in the select clause it is required
to retrieve the trip attribute. If the trip attribute is segmented
(i.e., multidimensional tiling partitioning is used), then the seg-
ments need to be returned from the partitions and merged in the
coordinator node to construct the full trajectory.

o kNN-Query:. It retrieves the k trajectories that have had a small-
est average distance with a given trajectory, for example:

1 SELECT tripId, twAvg(trip <-> 'tpoint(...)"') Dist
2 FROM trips

3 ORDER BY Dist asc

4 LIMIT 2

The distance operator < — > computes the distance between the
trip attribute and a given tpoint object, as a temporal float. The
twAvg function computes a time-weighted average for this dis-
tance. The combination of ORDER BY and LIMIT tells PostgreSQL
that this is a KNN query, and triggers index filter.

5.1 Query Parser

The standard query parser of PostgreSQL parses and transforms the
user query into a parse tree structure. However it does not know
about the catalogue information that we store for the distributed
tables. Therefore, we enrich the parse tree with tags that will help
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the planner to generate the distributed plan. For instance, the fol-
lowing query: “which trips reached a certain bus station at specific
instant?”
SELECT tripId,
FROM trips
WHERE intersects(
atTimestamp(trip,

atGeometry(trip, 'Polygon((...))")

timestamp '...'), 'Polygon((...))"'))

The parse tree of this query is shown in Figure 4. The blue tags
are enriched by our query parser. The tags mark the distributed
tables, predicates, and arguments. They also mark the functions
that operate over the spatiotemporal attributes in the distributed
tables.

Spatiotemporal Parse Tree
l SelectClause l l FromClause l
latGeometry: spatial, paniaITraJ] [EIemHef ElemRef

(o €

Figure 4: Query parsing example

5.2 Query Designator

It checks which workers (i.e., data partitions) may contribute to
the result. This is done by inspecting the query predicates, e.g.,
overlaps(&8), contains (@>), contained (<@), and the extent of the data
partitions which is stored in the catalogue. We also support spatial
and temporal filtering separately based on the function arguments
as most of these functions have different arguments. In other words,
both of the MobilityDB geometric operators and topological func-
tions can be used in the user query. For example, the operator &&
is used to filter trajectories that overlaps a spatial, a temporal, or
spatiotemporal object such as tpoint, period, geometry, stbox,
box2d, etc.

5.3 Query Planner

The query planner starts from the user SQL and its enriched parse
tree. It then creates an SQL statement per worker. Workers execute
in parallel. The coordinator collects the worker results, and con-
structs the overall query results. For the currently supported types
of queries (Section 5), the planner needs to analyze and distribute
both the SELECT and the WHERE clauses of the user query. For
the WHERE clause, the handling amounts to rewriting the table
name into the name of the partition at the designated worker.
The distribution of the SELECT clause depends on the parti-
tioning method, either or not individual trajectories are split over
partitions. In the case of hierarchical partitioning, trajectories are
not split. They are copied in all overlapping partitions. The same
SELECT clause is then sent to workers, and the role of the coordina-
tor is to remove the duplicate results. For the temporal aggregates,
a combiner function is added to the post-processing tree, to be exe-
cuted in the coordinator node on the results collected from workers.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
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For example, the function tcount, which is used to calculate at each
point in time the number of defined trips, is executed as a tcount on
the worker nodes, then as a temporal sum tsum combiner function
in the coordinator. This mapping between the aggregate function
into worker and combiner functions is stored in the catalogue.

When the distributed table is partitioned using a method that
splits the trajectories (i.e., multidimensional tiling), the planner
needs to take into account that worker queries process trajectory
segments, instead of the whole trajectory. Thus, the query func-
tions computed on trajectory segments distribute the functions
accordingly. For example, the cumulativelLength function returns
a tfloat value that represents the travelled distance, as a function
in time. When the trajectory is split over multiple partitions, the
cumulative length will independently be computed by workers for
every segment, starting from zero. The workers will thus compute
partial results, that the coordinator will need to combine and gener-
ate the final result. To achieve this, we propose a mechanism that a
distributed function is defined in terms of three functions: worker,
combiner, and final. The worker function executes in parallel in
worker nodes, and process the trajectory segments. Both combiner
and final functions execute in the coordinator, where the former
combines pairs of workers results, and the latter produces the final
result. As such, it is delegated to developers to define the way in
which query functions are distributed. This information is stored in
the distribution catalouge, and used here by the planner. A detailed
example is illustrated in Appendix A.2.

If it is the case that the trajectories are segmented and need to be
reconstructed, the distributed query is executed in two phases. In
the first phase, the worker queries will execute the filter and the join
predicates and return the object identifiers. In the second phase, the
worker queries will retrieve all segments of the result trajectories.
The coordinator will then merge these segments, reconstruct the
trajectories, and execute the select clause of the user query. To
illustrate, consider the following query which retrieves the trip
trajectories that temporally overlap any of the time periods in table
periods:

SELECT DISTINCT T.trip
FROM trips T, periods P
WHERE T.trip && P.timePeriod

Assuming that the trips table is partitioned by the trip attribute
using a multidimensional tiling, the planner will generate a two
phase plan as follows:

--Phase 1

SELECT DISTINCT T.tripId
FROM trips T, periods P
WHERE T.trip && P.timePeriod
--INTO intermediateResult

--Phase 2
SELECT tripId, merge(trip)
FROM

(SELECT trip FROM
WHERE tripId in
UNION

worker1.trip
intermediateResult)

UNION
(SELECT trip FROM
WHERE tripId in
GROUP BY tripId

trip_part_n
workern.trip)
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Phase 1 query will be distributed over the workers to only evalu-
ate the predicate and return the primary key of the trips table3. The
result is stored in an intermediate structure. In the second phase,
all workers are queried with this list of identifiers to return the
respective trajectory segments. The coordinator will then call the
merge function, which we implement, to concatenate the trajectory
segments. The result of the second phase will finally be processed
in the coordinator to produce the final query result.

5.4 Query Executor

The executor is the module monitors the running of the query on
worker nodes, and the production of the final query results on the
coordinator. As discussed in the previous section, the query might
need to be executed in one or two phases. We choose as a design
option to implement an executor per query type. That is, currently
there are four executors corresponding to the four supported query
types: range, broadcast join, trajectory, and kNN. This choice allows
for more query-specific optimizations. Nevertheless, they all share
common functions such as sending queries to individual workers,
collecting back the worker results, and generating the final result
in the generator. It is also the task of the query executor to manage
nodes failures, but this is not implemented in the moment.

5.5 Execution Plans

This section illustrates the distributed query plan for the queries in
Section 5. These plans have been generated by the PostgreSQL EX-
PLAIN command, on a cluster with 36 workers, hence 36 partitions
S = {51,952, ..., S36}. We also illustrate the effect of the different
data partitioning methods on the generated plans. The number of
trip segments in each partition is less than or equal to 10,000.
Range-Query. The generated plan is as follows:
Distributed MobilityDB Plan (Range Query):
-> Scanning the global index:(Multidimensional Tiling)
-> Total number of partitions:36
-> Filter: (shard_bbox && StBOX('Polygon((...))"',
period '[2012-01-01, 2012-01-05)"'))
-> Partitions Removed by Filter: 27
-> Remove Duplicates
-> Number of Parallel Tasks: 9
-> Task 1 (WorkerNode1l):
-> Local Query:
-> SELECT tripId FROM trips_shard_3
WHERE intersects(trip, 'Polygon((...))"') AND
trip && period '[2012-01-01, 2012-01-05)"'
-> Local Plan:
-> Index Scan using trips_shard_3_spgist_idx on
trips_shard_3
-> Index Cond: (trip && StBOX)

The plan shows that the query is of range type, and that the data is
partitioned using a multidimensional tiling. The query designator
removed 27 partitions (Line 5) that do not contribute to the results.
Therefore, the query is distributed to 9 partitions, each of them
will receive the same query, only replacing the partition name. The
worker queries will be managed independently by workers, and will
run in parallel. The query of WorkerNode1 is shown in lines 8-15,
the query will access the trips_shard_3 table. It replaces the table
name in the user query with the corresponding partition in the

3The planner knows about the primary key from the catalogue
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worker. This query, being valid SQL, gets independently optimized
by the PostgreSQL instance in the worker. The local plan that is
generated at the worker is given in lines 13-15. It performs an index
scan on the SP-GiST index (Line 14) to optimize the local query
execution. Note that this index has been created at the coordinator,
and was transparently created at the workers by the distribution
manager.

Broadcast Join Query. The query plan is as follows:

Distributed MobilityDB Plan (Broadcast-Join Query):
-> Scanning the global (Hierarchical):
-> Total number of partitions: 36
-> Remove Duplicates
-> Number of Parallel Tasks: 36
-> Task 1 (WorkerNode1l):
-> Local Query:
-> SELECT S.id, T.tripId FROM trips T, streets S,
periods P WHERE intersects(T.trip,S.geom) AND T
.trip && P.timePeriod
-> Local Plan:
-> Nested Loop Join Filter:
)::stbox)
-> Seq Scan on periods p
-> Nested Loop
-> Seq Scan on streets S
-> 1Index Scan using trips_shard_1_spgist_idx on
trips_shard_1
-> Index Cond: (trip && S.geom)
-> Filter: intersects(trip, S.geom)

index:

(t.trip && (p.timePeriod

The plan detects that the query is broadcast join, and that the
data is partitioned using the hierarchical partitioning. Since the
tables streets and periods are reference/replicated tables, the query
is simply broadcasted to all the 36 workers. The coordinator will
collect the results and remove duplicates (line 4). The duplicates are
caused by the hierarchical partitioning, which copies the trajectory
in all overlapping partitions.

Trajectory Query. The query plan is as follows:

Distributed MobilityDB Plan (Trajectory Query):
-> Scanning the global index:(Multidimensional Tiling)
-> Total number of partitions: 36
-> Merge: (trip)
-> Merge Key: tripId
-> Number of Parallel Tasks: 36
-> Task 1 (WorkerNodel):
-> Local Query:
-> SELECT tripId, trip FROM trips_shard_4 WHERE
tripId in (1,2,10) AND speed(trip) ?> 25
-> Local Plan:
-> Bitmap Heap Scan on trips_shard_4
-> Filter: (speed(trip) ?> 25)
-> Bitmap Index Scan on
trips_shard_4_tripId_btree_idx on
trips_shard_4

-> Index Cond: (tripId = ANY ({1,2,10}))

This is an example of the two phase execution plan. It is invoked
here because the select clause requires to return the trip trajectory
attribute, and because the data is partitioned using the multidimen-
sional tiling method. As shown in lines 6-9, the query is sent to
all partitions for obtaining all segments of the trajectory. Then in
line 4, phase 2, the merge operations is invoked to reconstruct the
complete trajectory. The B-tree index on tripID (Line 13) is invoked
as part of the second phase of execution to speed up the search by
identifier.
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KNN-Query. The query plan is as follows:

Distributed MobilityDB Plan (kNN Query):
-> Scanning the global index: (Hierarchical):
-> Total number of partitions:36

-> Limit

-> Sort

-> Number of Parallel Tasks: 5
-> Task 1 (WorkerNode2):

-> Local Query:
-> SELECT tripID, twAvg(Trip <-> 'tpoint(...)")
FROM trips_shard_18 ORDER BY Dist asc LIMIT 2
-> Local Plan:
-> Index Scan using trips_shard_18_gist_idx on
trips_shard_18
-> Order By: (trip <-> 'tpoint(...)")

The query is internally mapped into a kNN query, because of
the planner has a special rule to understand the combination of
distance, orderby, and limit as a kNN query. Since GiST and SP-GiST
indexes in PostgreSQL support kNN queries, MobilityDB leverage
this to support trajectory kNN. As shown in lines 12-13, the local
GiST indexes will be used at workers. The the coordinator then
performs the combination of sort and limit (lines 4-5), to obtain the
final results.

6 EXPERIMENTS

This section presents an experimental evaluation of the proposed
Distributed MobilityDB. We assess two aspects: query performance,
and scalability (different cluster parameters). In addition, we pro-
vide comparisons with the state-of-the-art systems that are based
on different platforms: (1) Summit [1], which is a Hadoop-based ex-
tension for trajectory data management; (2) HadoopTrajectory [3]
which is also a Hadoop-based extension; (3) Dita [11] which is a
Spark-based extension for spatial trajectory data analytics; and (4)
SECONDO Distributed2Algebra [10], which is a distributed data-
base algebra in the SECONDO moving object database system.

6.1 Experiment Setting

Cluster Setting. All experiments have been done on a cluster
consisting of four physical machines. Every machine has: Intel(R)
Xeon(R) CPU E5520@2.27GHz, 24GB RAM, 500GB HDD, 2 sockets
with 4 cores and 2 threads per core, where the total number of
workers is up to 16. We use 12 workers on each machine and 4
workers left for the operating system. One of the cluster machines
is chosen as a coordinator. Therefore, the total number of workers
on the cluster is 36 (i.e., 12 workers * 3 machines). In MobilityDB,
the nodes have the same stack that consists of PostgreSQL, Post-
GIS, and MobilityDB. The Summit and HadoopTrajectory systems
are installed on the nodes with Hadoop-2.7.3. For installing the
Dita system, Apache Spark-2.2.0 is installed on all nodes. For the
Distributed2Algebra, SECONDO 4.2.0 is installed on all the four
machines. In all experiments with the three systems, one machine
acts as the coordinator, and the remaining three machines act as
workers.

Dataset. The experiments are conducted on a real publicly avail-
able AIS ship trajectory data that is provided by the Danish Mar-
itime Authority*. We use two different sizes: 40GB (153M Points
and 90K Trajectory), and 80GB (467M Points and 227K Trajectory).

“https://www.dma.dk/SikkerhedTilSoes/Sejladsinformation/AIS/Sider/default.aspx
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Figure 5: Data partitioning and indexing

System Setting. In MobilityDB, we experiment with the two
partitioning methods: hierarchical and multidimensional tiling. The
queries are executed five times and the average of the observed
metrics are taken. The experiments with the other systems are done
on the 40GB of the AIS data.

In Summit, we partition the data using its hierarchical partition-
ing method. The temporal partitioning is done at the granularity of
days and the quadtree is used as the spatial index inside each day.
We needed use a smaller extent than the spatial extent of the data.
This is because apparently the quadtree index that Summit uses
requires more memory than the cluster capabilities. After reducing
the spatial extent, the index was built and stored successfully. For
fairness of comparison, the reduced extent has also been loaded
in MobilityDB. For executing the experiment queries, we built a
python script that calls the command of every query five times.

For the HadoopTrajectory, the data was partitioned using the
3D R-tree index, and a local hash-map was used for accessing the
full trajectories. The experimental queries were run using a python
script, similar to the one used with Summit, modifying the query
commands. In the Dita system, the data was partitioned and indexed
using their pivoting strategy and a trie Index.

For the SECONDO Distributed2Algebra, the data was partitioned
by 3D grid partitioning. After that, partitions were indexed using
the 3D R-tree index. The experimental queries were translated into
the SECONDO executable language.

In all systems, every query is executed five times, and the aver-
age runtime is recorded. Figure 5 shows the execution time for data
partitioning and indexing. The multidimensional tiling partitioning
in MobilityDB takes more time as it splits the trajectory multiple
times. In contrast, the hierarchical partitioning does not take much
time, as it deals only with the bounding box of the trips. In SEC-
ONDO, the local index took most of the execution time, because
it was created on the units, i.e., trajectory segments. Partitioning
part in the Dita system took most of the time as it requires to select
several pivot points from each trajectory. For Summit and Hadoop-
Trajectory, most of the time was taken in building the local indexes.

6.2 Query Performance Comparison

In this section, we compare the query run time in the five systems.
As their capabilities are different, the comparison is based on the
common query types: range query and kNN query. For the range
query, we vary the range area and monitor the performance. The
range type can be spatiotemporal, spatial, and temporal. We built
a function that generates six random range sizes, for every range
type, 0.05%, 3%, 6%, 12%, 25%, and 50% of the spatiotemporal extent
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of the data. For each range size, we randomly generate 5 ranges,
then use them in queries to all systems. Per range size, the average
of the 25 queries per system is taken.

Figures 6a, 6b, 6¢ show the run time comparison of range queries:
spatial, temporal, and spatiotemporal respectively. MobilityDB is
compared twice, using its two partitioning methods: hierarchical
and multidimensional tiling. The Dita system does not have tem-
poral query capabilities, so it appears only in the spatial range
comparison. As illustrated in the three figures, MobilityDB, no mat-
ter the partitioning method, is slightly faster than SECONDO. Both
are one order of magnitude faster than the two Hadoop systems.
There is no significant difference in performance that can be attrib-
uted to the method of data partitioning in MobilityDB. In Summit,
for the spatiotemporal and the temporal range queries, the results
are quite similar because it filters data using the temporal index as
a first step. Therefore, the mappers receive small part of the data.
Moreover, the spatial index needs to scan more data, not like the
database index. The spatial range queries are more expensive in
Summit, clearly due to the hierarchical partitioning, combined with
the less efficient spatial index. In general, the two Hadoop-based
systems have overheads of starting the job and repartitioning the
data between the mappers, which increases their run-time in disk-
bound tasks. This overhead also exists in Dita, yet with a smaller
value because it is a spark based, i.e., in memory. In general, they
are more suited for analytic tasks that are CPU bound. The key
comparison here is perhaps with SECONDO. Indeed, there is a mi-
nor performance advantage in MobilityDB, yet the main advantage
is declarativeness. SECONDO uses a procedural language which is
similar in its concept to map-reduce. In this work, the user interface
is SQL, and the query distribution is transparently managed by a
planner.

Figure 6d shows the performance of trajectory kNN queries
in MobilityDB and Summit. The x-axis represents the number of
random trajectories that are sampled from the input data (1, 5, 10,
20), and the k which ranges from 2 to 60. The y-axis represents the
query run-time. For doing a fair comparison, we execute the kNN
for each trajectory in the experiment in an individual query and we
take the summation of the total for each group. This same is done
in Summit, where we call the operation dtwknn for each trajectory
in a separate command. The query performance in Distributed
MobilityDB is better than Summit due to two main reasons: the
local index performance of MobilityDB and the overhead caused
by starting the query in Summit. This is consistent with the results
obtained with range queries.

Figure 6e shows the performance of the trajectory query in Mobil-
ityDB and SECONDO, for a varying number of queried trajectories.
The multidimensional tiling gives a faster performance. This is
expected as the query predicates only run on smaller segments,
rather than complete trajectories. The data transfer cost is also
smaller. Some of this gain is lost in the trajectory merge step at the
coordinator. The overall performance is still however in favor of
splitting trajectories.

Figure 6f analyzes the time spent inside MobilityDB for the
predicate execution, compared to the time spent in transferring
the results to the coordinator. In the predicate execution, there is
no data transfer from the workers to the coordinator. In contrast,
when the user asks for retrieving trajectories, after the predicate
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is executed the data is transferred to the coordinator. The transfer
cost using the multidimensional tiling partitioning is better than
the hierarchical partitioning as the former stores shorter trajectory
segments in workers. The coordinator node receives these short
trajectories and merges them before sending the results to the user.
Clearly transferring complete trajectories will consume more disk
and networking time.

6.3 Scalability

To assess the scalability of Distributed MobilityDB, we measure the
effect of changing the cluster parameters on the query performance.
The cluster parameters are the number of workers, the dataset size,
and the size of the replicated tables that are used in a join query.
We use two kinds of queries: range and broadcast join.

As shown in Figure 7a, we vary the number of workers (from 5
to 30) to test the performance of the spatiotemporal range query.
Note that the number of workers is equal to the number of table
partitions, where each worker is responsible for executing a query
on one partition. We use two different ranges of the total volume:
6% and 25%. The run-time performance of the two partitioning
methods improves linearly with the increase in the number of
workers. The reason behind this depends on the local index size,
where reducing the size of the partitions gives a higher possibility
for the index to be fit in memory. Figure 7b shows the scalability wrt
data size. We used two different AIS data sizes: 40 GB and 80 GB. The
figure shows that multidimensional tiling partitioning consistently
improves the range query performance. It also shows that the effect
of the dataset size starts to be visible when the range size is big, i.e.,
25% of the extent or more, which is not typical in range queries. For
smaller ranges, the data size has a much smaller effect. This result
is attributed to the indexes that will quickly filter the trajectories
outside the range, which reduces the effect of the data size. In
Figure 7c, we show the performance of the broadcast join query.
The trips table is distributed and the ports table is replicated as
a reference table. We test the query performance using different
number of rows of the replicated table (50, 200, 400, 1000). The
query returns the number of ships that visited each port, during an
interval of 10 days.

7 CONCLUSION AND FUTURE WORK

This paper presented an architecture of a distributed moving ob-
ject database system and its implementation in MobilityDB. The
distribution of data and queries is done by a distribution manager,
which is implemented around the PostgreSQL query planner. The
queries are done in SQL and the query distribution is transparent
to users. The paper presented four kinds of queries that the dis-
tribution manager can currently support: range, broadcast joins,
trajectory, and kNN. In the future, we will be working on support-
ing non-co-located spatiotemporal joins. These are the queries that
require joining multiple distributed tables, where the partitions
can be located in different worker nodes. This type of queries is
particularly challenging as it involves data redistribution. We will
also be working in methods to deal with node failures during the
distributed query processing.
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A APPENDIX
A.1 MobilityDB Query Operations

MobilityDB supports a large set of query operations. In this section,
we will explain the signature and usage of the query operations
that were used in the queries in the paper. The trajectory data is
represented using a data type, called tgeompoint, for temporal
geometry point. It represents the continuous motion of a moving
point object. That is, it linearly interpolates the location between
the spatiotemporal point observations.

The function speed computes the speed of the object in meter-
s/second, feet/second, etc, according to the spatial projection of the
underlying map. The signature of the function and its output type
are as follows:

speed(geompoint): tfloat
The output of the function is of type tfloat which represents
the speed as a float value at every timestamp. It can be used in a
predicate, called ? > (ever greater than), as in the trajectory query
in Section 5. This predicate returns true if the tfloat value was
greater than a given value atleast for a single time instant during the
whole trip. Other similar operators are ? =, ? <, ? <>, respectively
read as ever equals, ever less than, and ever not equal.

tfloat {?>, ?=, ?<, ?<>} numeric: bool

The function intersects a temporal version of the PostGIS func-
tion st_intersects. It accepts two arguments, where at least one
of them is of type tgeompoint, and the other is either a geometry
(e.g., polygon, linestring, etc), or a tgeompoint. If the case is that
the two arguments are of type geometry, then MobilityDB dele-
gates the execution to the PostGIS function. The signature of the
function is as follows:

intersects({tgeompoint, geometry},
{tgeompoint, geometry}): bool
The semantic is ever intersects. That is, the function returns true
when there is a non empty intersection between the two argument
at least one time instant during their definition time. Note that
there is another temporal intersects function with the signature:
tintersects({tgeompoint, geometry},
{tgeompoint, geometry}): tbool
This function returns a temporal boolean, which represents the
intersection at every time instant in the common definition time of
the two arguments. Similarly, there are other topological functions:
contains, tcontains, touches, ttouches, etc.

The distance operator < — > is a temporally lifted version of
the PostGIS distance operator. The left and right arguments can
be of type tgeompoint or geometry. For example, It can be used
to calculate the spatiotemporal distance between two trajectories.
The signature of this operator is as follows:

I

{tgeompoint, geometry} <-> {tgeompoint, geometry}: tfloat
The output is of type tfloat and can be used in a predicate to check
a given distance threshold. It also can be passed to the function
twavg, a time-weighted average. This function receives a tfloat
and summarizes it into a float value. The signature is as follows:

twAvg(tfloat): tfloat
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A.2 Distributed Functions

This annex illustrates the concept of distributed functions in Section
5.3. An example is illustrated in Figure 8 for the cumulativelLength
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function. Given the trajectory in Figure 8a, this function should
return a tfloat value that represents the travelled distance, as
a function in time (Figure 8b). When the trajectory is split over
multiple partitions the cumulative length will independently be
computed by workers for every segment, starting from zero. In this
example, the moving object trajectory is split in three segments as
in Figure 8c. Three workers will compute the three partial results in
Figure 8d. The coordinator will then need to combine these partial
results, and generate the final result.
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To achieve this, we define the cumulativelLength function as
a distributed function. This is a mechanism that we implement
in the distribution manager to help distributing queries. A dis-
tributed function is defined in terms of three functions: worker,
combiner, and final. For instance, we define cumulativelLength as
a distributed function, using the following statement:

CREATE DISTFUNCTION cumulativelLength(tgeompoint) (
WORKERFUNC = cumulativelLength_worker,
COMBINERFUNC = cumulativelLength_combiner,
FINALFUNC = cumulativelLength_final);

The worker function cumulativelength_worker processes the tra-
jectory segments at worker nodes:

CREATE FUNCTION cumulativelLength_worker(traj tgeompoint)
RETURNS tfloat[] AS $$

DECLARE
result tfloat[];

BEGIN
SELECT ARRAY(cumulativelLength(traj)) INTO result;
RETURN result;

END;

$$ LANGUAGE PLPGSQL IMMUTABLE STRICT;
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It computes the cumulativelLength for the given trajectory seg-
ment, and puts it into a single element SQL array. The combiner
function cumulativelLength_combiner, which is evaluated in the
coordinator node, will do a simple concatenation of the arrays
resulting from the multiple workers, as follows:

CREATE FUNCTION cumulativelLength\_combiner (resi
res2 tfloat[])
RETURNS tfloat[] AS $$
BEGIN
RETURN array_cat(resl,
END;
$$ LANGUAGE PLPGSQL IMMUTABLE STRICT;

tfloat[],

res2);

The final function cumulativelLength_final will sort the array
of all partial results by their start time, and merge them. Lines 13,
14 illustrate how the last value of the cumulative length of one
segment is added to the next segment, in order to construct a single
function out of the partial results. Line 16 calls the merge function
which constructs a tfloat result from the array.

CREATE FUNCTION cumulativelLength_final(partialResults
tfloat[])
RETURNS tfloat AS $$
DECLARE
cnt integer;
i integer;
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len float= 0;
sorted tfloat[];
merged tfloat[] =
BEGIN

SELECT array_sort(partialResults) INTO sorted;
cnt= array_length(sorted, 1);
FOR i IN 1..cnt LOOP

merged= array_append(merged,

RO A

arr_sort[i] + len);

len = endValue(merged[il);
END LOOP;
RETURN merge(merged); //convert array into tfloat

END;
$$ LANGUAGE PLPGSQL IMMUTABLE STRICT;

As such, we allow for future extensiblity, where developers can
add new distributed functions and define the way they will be
evaluated. The list of such functions is stored in the distribution cat-
alogue, and used by the planner. This mechanism of implementing
distributed functions would work for other methods of tiling, and
for multidimensional data in general. Assume that for application
needs, it is required to partition data by administrative boundaries,
e.g., multi-tenant applications. Then the spatial boundaries of the
partitions can be described by polygons, and the data gets parti-
tioned and split accordingly. Note that distributed functions are not
relevant if the data partitioning method does not split the trajecto-
ries.
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