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Abstract

Data Warehouses (DWs) requir e storing and analyzing time-varying data to reflect changes that occur in the business world.
Solutions to this problem build on the field of temporal databases and adopt the tuple-timestamping approach, where tuples
are timestamped with their validity interval. Alternatively, the attribute timestamping approach represents a time-varying
attribute with a list of its evolving values and the time when these changes occurred. The SQL:2011 standard has favored the
tuple timestamping approach, which has also been used for temporal DWs, despite that it yields very long and complex SQL
queries. This paper aims at reconciling both approaches and advocates for a database that can support both models, in a way
such that they complement each other. We show that, to efficiently operate with tuple timestamping, we need appropriate time
data types and operations for representing and manipulating temporal elements. We also show that many applications are more
naturally and efficiently modeled and implemented using attribute timestamping. To prove the feasibility of our proposal,
we implemented a portion of the TPC-DS benchmark using three alternative approaches, two of them based on classic tuple
timestamping (including the well-known slowly-changing dimensions model), and a third one, based on our proposal. For
the latter, we used MobilityDB, a novel spatiotemporal database built on top of PostgreSQL, that integrates both models in a
natural way. Experiments showed that our proposal outperformed the other two ones, in many cases, by orders of magnitude.

Keywords Temporal data warehouses - Temporal databases - Slowly changing dimensions - Attribute timestamping - Tuple
timestamping

1 Introduction and motivation as a collection of so-called facts (quantified by measures)

and dimensions, along which, facts are analyzed by means

Business Intelligence (BI) systems aim at transforming large
volumes of business data into knowledge that can be used
for decision making. Typically, BI systems are supported by
a Data Warehouse (DW), which integrates data coming from
different sources [37]. A DW is typically represented using
a multidimensional model (MD), where data are perceived
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of aggregation across hierarchies. Although it is usual to
consider that facts are the only dynamic part of a DW, dimen-
sions may change over time in many different ways [18].
Thus, a MD model must be able to handle time-varying data
while also allowing non-temporal objects [17]. It must also
include a collection of OLAP (Online Analytical Process-
ing) operations to analyze both non-temporal and temporal
data. Finally, all of the above should be implementable using
existing technologies, mainly relational databases.

In DW practice, changes in the instances of the dimensions
are usually handled using the concept of slowly changing
dimensions (SCDs) [21], which extend a dimension table
with two columns usually denoted FromTime and ToTime,
representing, respectively, the start and end of the interval
of validity of each tuple in the table. Since SCDs are an ad-
hoc solution to the problem and do not consider most of the
research in the domain of temporal databases [31], Ahmed
et al. [1] proposed a temporal MD data model that allows
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storing non-temporal and temporal data and showed that it
can be implemented in standard SQL.

Temporal relational databases usually follow the tuple-
timestamping model [10], where tuples are timestamped with
their validity interval, so that, whenever the value of some
attribute changes, a new tuple is created in a table, allowing
keeping track of the history of the database. This is basically
the SCD approach. On the other hand, in the attribute times-
tamping approach [12], when an attribute value changes,
the new value is inserted together with its timestamp, thus
producing a list of (value,timestamp) pairs that represent
the evolution of the value of the attribute across time. In
spite of the many years of research in the field of tempo-
ral databases, tuple timestamping proved to be very difficult
to put in practice so far [11]. However, adopting this solu-
tion was fueled by the fact that most databases in the market
followed the first normal form (1NF) data model, and there-
fore, tuple timestamping was basically the only alternative
for implementation. However, in a data warehousing sce-
nario, tuple timestamping yields very complex and long SQL
OLAP queries [1], as we show in Sect. 5 of this paper. On
the other hand, attribute timestamping not only allows sav-
ing storage space in the database, but also promises a better
performance for a wide range of queries. For example, in a
stock-exchange database, the history of the value of a stock in
the attribute-oriented approach is encoded in a single tuple.
Thus, a table with the values of a stock in the NASDAQ-100
will just have one-hundred tuples, each one containing the
historical time-series values. On the other hand, a table using
tuple timestamping enconding will contain, for each stock,
as many tuples as values of the stock have been registered.
Clearly, the computation of the maximum value for a stock
across time, would be much simpler using the first encod-
ing. In light of the above discussion, the question that arises
is: when would we prefer one approach over the other? We
argue that the choice between attribute and tuple timestamp-
ing depends on the type of operation we face. We address
this problem in this paper and advocate for a database that
can support both models, in a way that they can complement
each other.

In this paper, we show that, to efficiently operate with tuple
timestamping, we need appropriate time data types for rep-
resenting timestamps, sets of timestamps, periods, and sets
of periods (called temporal elements). Further, we also need
operations on these data types to implement a closed interval
algebra allowing the representation of the results of union,
intersection, and difference of time intervals. For example,
suppose an employee e works in a project pj in the intervals
[1,4] and [7, 18]. There is also employee e; who worked in
the same project in the intervals [3, 4], [8, 9] and [12, 14].
Now, we want to ask for the periods when they worked
together in the same project. With tuple timestamping, the
input to the query would need five tuples, one per employee
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and per period. These tuples will be combined to obtain the
result. Opposite to this, with attribute timestamping, the input
will be composed of two tuples and the result will be com-
prised in a single tuple.

The data types and operations mentioned above are pro-
vided by MobilityDB [41], a novel database that builds on
PostgreSQL! and its spatial extension PostGIS.> MobilityDB
extends the type system of PostgreSQL and PostGIS with
data types for representing spatiotemporal data. These data
types are based on the notion of temporal types and their
associated operations. Although MobilityDB was originally
aimed at mobility analysis, its temporal types can represent
the evolution over time of any kind of data, like integer, float,
Boolean, and text. Thus, new data types like temporal integer
(tint), temporal float (tfloat), and temporal Boolean (tbool)
are defined, along with functions to manipulate them. This
makes MobilityDB a temporal database supporting both,
tuple and attribute timestamping. In this paper, we show
that we can exploit this capability to express all temporal
algebra operations [29, 40] in a concise, natural way, pro-
ducing queries that outperform the traditional approach in
many cases. This is relevant in heavy aggregation scenarios,
like DW environments. Our work aims at showing that, since
many applications (in particular the ones requiring temporal
aggregation) can be naturally and efficiently modeled and
implemented using attribute timestamping. Thus, supporting
both approaches opens a wide range of design and imple-
mentation possibilities, closing the gap produced so far by
the lack of alternatives to tuple timestamping. We illustrate
this idea through an example, shown in Fig. 1, which we will
also use in Sect. 2. For clarity, a tabular version of this figure
is shown in Fig. 1.

Figure 1 shows a portion of three fictitious time series rep-
resenting, for instance, the value of stocks in the NASDAQ-
100. The upper part of the figure shows an attribute times-
tamped representation in a table Stocks(Stockld, Price).
Attribute Price is of type tfloat, therefore the table con-
tains three records that represent the twenty-five values,
and each record contains the time series of each stock’s
price. The lower part of the figure shows an equivalent tuple
timestamped representation, that requires twenty-five times-
tamped records. Clearly, the representation in the upper part
of the picture is more compact and also more appropriate
to compute, for example, the maximum or average of stock
prices. However, combining both approaches may be bene-
ficial for some other operations, as we discuss next.

Suppose now that we want to partition the Stocks table,
for example, to distribute records into three nodes or cores,
for parallel computation. We want each partition to contain
approximately the same number of values (e.g., partitions

! https://www.postgresgl.org.
2 https://postgis.net/.
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Fig.1 Reconciling tuple and values
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Fig. 2 Tabular representation
Right: Attribute timestamping

of Fig. 1. Left: Tuple timestamping;

P1 and P2 will contain eight values and partition P3 nine).
We thus need an adaptive partition, not one that consid-
ers equal time periods. This operation is called adaptive
time binning. A key step in the binning computation finds
the time limits of each partition. This computation over
the attribute-timestamped Stocks table, would require a
sweepline algorithm that scans all the time instants, which
would be very inefficient. Instead, we can unnest the table
into a tuple-timestamped representation and then compute
the time limits of each partition. Finally, with the partitions
already defined, we can go back to the original representation
and use MobilityDB functions to efficiently find the parts of
each series that fall into each partition. We leave the details
to Sect. 2.

Paper Organization. Section2 provides a theoretical frame-
work for studying the problem, where we define a formal
abstract model that supports attribute and tuple timestamp-
ing. In Sect. 3 we present the MobilityDB database as a
concrete implementation of the abstract model. We also show
the plausibility and benefits of the reconciliation approach.
Section4 discusses temporal DWs and presents the running
example we use in the paper, which we implement in two
classic temporal DW models and also using MobilityDB.

In Sect. 5 we study how the classic temporal algebra oper-
ations, namely, temporal selection, projection, join, union,
difference, and aggregation, are expressed over the three
implementations. Since the implementation in SQL of these
operations was studied in [29, 40], we considered them as
a basis of our study. Section 6 presents the semantics of the
temporal version of the most used classic OLAP operations
namely roll-up and dice. Over the three models above, in
Sect. 7 we define six representative queries, implementing
the temporal OLAP operations previously mentioned. We
perform experiments using the temporal algebra and OLAP
queries and report the results in Sect. 8. Section9 discusses
related work in the context of the paper. We conclude in
Sect. 10.

2 An abstract model for temporal databases

In this section we present an abstract model for temporal
databases that supports both tuple and attribute timestamp-
ing. Following Giiting [ 16], the term abstract refers to the fact
that the definitions are made in terms of infinite sets. There-
fore, we can get rid of the nuances of the implementation,
which we address in the concrete model given in Sect. 3.
Temporal databases associate time with real-world objects
and events in several ways [30]. Valid time (VT) refers to the
time when a piece of information is considered valid in the
real world. Transaction time (TT) represents the time when a
piece of information is stored in the system. Transaction time
represents the state of the database at different points in time
and it is mainly used for roll-back or auditing purposes. Valid
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Fig.3 aUnion, intersection, and difference of two time values; b Union
and temporal count aggregates

and transaction times are orthogonal, and can be used either
individually or combined to define bitemporal time (BT).
Further, lifespan (LS) represents the time when an object
exists. The lifespan of an object can be seen as the valid time
of a fact telling that the object exists. In the remainder, for
the sake of simplicity and without loss of generality, we only
consider valid time and lifespan.

2.1 Modeling time

Definition 1 (Time domain) The time domain 7 is a discrete
and linearly ordered set of elements called instants. Instants
are isomorphic (i.e., structurally similar) to the natural num-
bers. A special instant now in 7 denotes the current time
instant. O

Definition 2 (Time values) A time value T C 7 is a finite
subset of the time domain 7 . O

Definition 3 (Set operations on time values) Let 7, 1) C 7
be time values. The union (U), intersection (N), and dif-
ference (—) of time values t; and 7, are defined as the
traditional set operators. For example, given a set of time
values {71, ..., T,} their union is defined as U?:l 7. O

Figure 3a illustrates the operations on time values.

We define next a set of base data types, which have their
usual interpretation except that their domain is extended with
the value L (undefined), which corresponds to the NULL
value in standard SQL.
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Definition 4 (Base types) We assume a set 3 of base types
that includes the types bool, int, real, and string.3 The
domains of these base types are as follows.

dom(bool) = {true, false} U { L}
dom(int) = Z U {1}
dom(real) = RU {1}
dom(string) = SU {_L} where S are all finite strings
over a finite alphabet A.

2.2 Tuple timestamping

We now formally define tuple-timestamped relations and the
relational algebra operations on them. In what follows, cap-
ital letters denote schema elements and lowercase letters
refers to instances. Further, A represents schema tuples while
a represents instance tuples.

Deﬁ_nitign 5 (Tuple-timestamped temporal relation) Let
R(A : B) = R(A1:By,...,A,: By, be arelation scheme
where values of attribute A; are defined over dom(B;), B; €
B,fori =1,...,n. A tuple-timestamped temporal relation
r on R is defined as:

rCcla/t|a=I(ay,...,a,) €dom(By) X ... X
dom(Bjy) A 7 is a finite subset of 7}.

]

For a tuple a/t, we denote the value component by
v(a/t) = a and the time component by 7(a/t) = 7. Simi-
larly, for a temporal relation r we denote v(r) = {a | a/t €
rtandt(r)={t | a/t er}.

A temporal relation r may have a set of value-equivalent
tuples {a/ty,..., a/t,} for n > 1, such that their value
a coincide but their temporal part 7; do not. In this case,
a coalescing operation must be applied [8] to remove the
redundancy by replacing the above set of tuples with a single
one a/t, where 7 is the union of the time values t;. We define
next the COALESCE operation, following the ideas in [39].

Definition 6 (Coalesce operation) Given a temporal relation
r, we define COALESCE (r) = r¢, where

r¢=A{a/t |aev(r), {a/ty,...,a/t} Sr,n>1,

are all the tuples inr whose value is a A
=i wlk
]

3 MobilityDB, the database we use later to implement the abstract
model, also includes geometry and geography as base types but they
are not considered in this paper.
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In what follows, we assume that relations are always coa-
lesced. We define now the algebraic operators over temporal
relations, which generalize the classical ones. Redundancies
in the resulting relation are removed by means of the COA-
LESCE operation.

Definition 7 (Temporal selection) Let r be a temporal rela-
tion of schema R(A) and ¢ be a Boolean selection formula
on the attributes in A and/or the time component 7 of the
tuples in . Then,

0,(r) = COALESCE ({a/t | a/t € r A 9(a/7)})
[m}

Definition 8 (Temporal projection) Let r be a temporal
relation of schema R(A, B). Then,

75 (r) = COALESCE ({a/t | 3b)((@. b)/t € 1)})
O

Definition 9 (Temporal j9in) Let r| E_lnd r> be two temporal
relations of schemas R;(A) and R,(B), and ¢ be a Boolean
join formula involving the attributes in A and B. Then,

riXry = COALESCE ({(a,b)/t | a/t1 € r1 A
bjnernAn t=1N1Ap)

O

Definition 10 (Temporal union) Let r; and r, be two
domain-compatible temporal relations. Then,

r1 Urp = COALESCE ({c/t | ¢/t € r1 Vc/T € 12})
O

Definition 11 (Temporal difference) Let r; and r, be two
domain-compatible temporal relations. Then, r; — r, =
COALESCE ({c/t | ¢/t1 € 1 A ([c/72 € 12 AT =
n—nlvic¢gvir) ATt =1l o

We define next the notion of temporal aggregation, which
extends traditional aggregation. In this paper, we consider the
five typical SQL aggregation functions, namely, count, min,
max, sum, and avg, and their generalization to the tempo-
ral domain. Other aggregation functions can be generalized
similarly.

Consider for example, the non-temporal relation

Employee(SSN, FName, LName, Salary, DNo)

and the query “Number of employees and maximum salary by
department.” This query can be expressed by the following
aggregation

ADNo,count(SSN),max(SaIary) (Em ployee) .

Here, DNo is the grouping attribute, which partitions the rela-
tion Employee in as many relations as there are distinct DNo
values. Then, the expressions count(SSN) and max(Salary)
are computed in each partition.

The following definition formalizes the above. We assume
that every base type B € B, has a set of aggregate functions
Fp such as min(-), max(-), sum(-), etc., that operate over
sets of values in dom(B).

Definition 12 (Aggregation) Let r be a non-temporal rela-
ti_on over a schema R(A), andlet B,C C A, BNC = @.
B is a set of grouping attributes that defines a partition

Pg(r) ={P1,..., Py} of r, where
ng(r) ={b1,..., by}, and
P = nB,C(GB:E,-(V))’ fori =1,...,m.

Also, let f(C) = (fi(CD). ... fu(C)) fi € Faom(cy)» be
aggregate functions over the attributes C;. An aggregation of
r is an operation of the form A B.F(©) (r) defined as follows.

Ag 7)) = UL Aje)(P), and
Arey(P) = {(bi, f©) | € € ma(P))

We now generalize Def. 12 to the temporal case.

Definition 13 (Temporal aggregation) Let r be a tempo-
ral relation of schema R(A), and let B, C, and f(C) be
as in Def. 12, except that r is partitioned by the value
component v(r) of r, where each partition P; has a time
component T(P;) = {r{, e, r,£1i} that defines a timeline
T(P) = Un-11 1:]’: for each partition. Then, a femporal aggre-

J
gation Ay 7)(r) is defined by

Ag 7)) = UjZ COALESCE (A (P:)), and
Af(c—')(Pi) = Ut}il_Afg@)(P,‘, ;) for all T; € T(P)
Az (P Tj) = {(bi, f(©)/7j | &/t € ma(Pi) Atj € T)

[}

As shown above, the temporal aggregation of each partition
is obtained by applying the non-temporal aggregation to each
instant in the timeline of the partition. This corresponds to
the sequenced operations in [29].
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Example 1 Consider a temporal version of the Employee
table above, now with three tables:

Employee(SSN, FName, LName)
EmpSal(SSN, Salary, Time)
EmpDept(SSN, DNo, Time)

where Employee is a non-temporal table and both EmpSal
and EmpDept are temporal tables whose temporality is kept
in the Time column.

The query “Time when a department has at least one
employee” can be expressed as follows:

ApNo,union(Time) (EmpDept).

The result of this aggregate operation for a single partition is
illustrated in Fig. 3b, where the 7; are the time components of
the partition and thus each one represents the period during
which an employee was affiliated to the given department.
The union of the intervals is shown below 3. O

2.3 Attribute timestamping

We define next the attribute timestamping temporal model.
The model builds on the definition of temporal attributes,
which are attributes whose value evolves over time. The value
of a temporal attribute is a partial function that maps instants
of the time domain to values of the domain of its base type. A
non-temporal attribute can be considered a particular case of
a temporal one, whose values are represented as a constant
function that maps all instants of the time domain to a single
value in the domain of its base type. More formally, for each
base type B € B in Def. 4, the corresponding temporal type
is defined using a temporal type constructor 6(-). Examples
are 6(int) and 6 (real). We denote temporal types by adding
the prefix ‘t’ to their base type, such as tint or treal.

Definition 14 (Temporal domain of attributes) The tem-
poral domain of an attribute A with base type B, denoted
tdom(A), is defined as follows:

{f| f:7 — dom(B) is a partial function}

m}

Intuitively, the temporal domain of an attribute A defines
all possible functions f that assign to each element in the
time domain 7 a value in the domain of the base type B.
The notion of temporal domain can be easily generalized for
constant (i.e., non-temporal) attributes, as shown next.

Consider table Employee(SSN, Name, Salary), where
Salary is the only temporal attribute. Suppose that an
employee John has a salary of 30K during the interval [#1, t2),
35K during the interval [, #3), and undefined elsewhere. The
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value of this attribute for John can be defined as a function
f1:7 — Ras follows

30 fort) <t <1t
35 forrp <t <n3
1 otherwise

fi=

On the other hand, the temporal domain of the Name attribute
can be defined as the set of constant functions 7 — S that
assign a single value s € S for every element in 7. In the
case of John, we can define his name as a constant function
/> as follows

fo = ‘John’ forallt € T

Therefore, without loss of generality, we define temporal
relations in the attribute timestamping model considering
only the temporal domains of the attributes.

Definition 15 (Attribute-timestamped temporal relation)
Let R(A: B) = R(Ay : By,..., A, : B,) be a relation
scheme where attribute A; is defined over the base type
B; € B, fori = 1,...,n. Then, an attribute-timestamped
temporal relation r on R is defined as follows:

rcfiala=(ai,...,a,) €tdom(By) X ... X
tdom(B,)}.

]

Next, we define the range type constructor p (-) that allows
representing set of disjoint intervals of time or base values.
The range constructor is only applicable to types that have
a total order <. Intervals have a lower and an upper bound,
which can be either open or closed and have their usual mean-
ing. We denote open bounds by ‘(" and ‘)’, and closed bounds
by ‘[’ and ‘I’. Examples of intervals are [l1, u1) or (l2, uz].

Definition 16 (Range domain) Let B € 5 be a base type to
which the range type constructor p is applicable. The range
domain is defined as follows.

rdOm(B) = {10 | p = {plv R lol’l}7n Z ls pi = (li’ ui)v
l;,u; € dom(B),l; < u;, and ‘(’ is either ‘[" or(’
and ‘)’ is either‘]’ or )’}

O

We are now ready to define a collection of temporal oper-
ations over the abstract model. Following Giiting [16], we
define these operations by means of signatures over infinite
sets. In Sect. 3 we will show that the MobilityDB database
provides a concrete straightforward implementation of the
operations defined in this way, where only finite representa-
tions are used.
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Table 1 Classes of operations on temporal types

Class Operations

Interaction with GetTime, getValues, atTime, atValues

Domain/range AtMin, atMax, valueAtTimestamp,..
Local aggregates

Lifting

Integral, twAvg
(All new operations inferred)

Conversion Unnest

Table 2 Signature of operations on temporal types

Operation Signature
getTime 0(a) = p(7)
getValues 0(a) > p(a)
atTime O(a) x p(T) = 0(x)
atValues () x p(a) = 0(x)
atMin 0(a) — 0(a)
atMax 0(x) — 0(a)
real x O(real) — 6 (real)
O (real) x real — 6(real)
O (real) x O(real) — O(real)
unnest O(a) > ax p(7T)

Table 1 shows a set of operations associated with temporal
types grouped in several classes, while Table 2 depicts their
signatures. Some of these operations are discussed next.

Operations getTime and getValues return, respectively,
the projection of a temporal value into its domain and range,
which result both in a range value. Operations atTime and
atValues restrict the function to a given subset of the time
or base domain defined by a range value. Operations atMin
and atMax restrict the function to the points in time when
its value is minimal or maximal, respectively. Operation val-
ueAtTimestamp gets the base value of the function at a given
timestamp.

Generalizing operations on base types for temporal types
is called lifting [16]. As illustrated in Table 2, an operation
for base types (e.g., +) is lifted by allowing any of the argu-
ments to be a temporal type and return a temporal type. The
semantics of lifted operations is that the result is computed
at each time instant using the non-lifted operation. Lifted
operations correspond to sequenced operations [29] in tuple
timestamping.

Two interpretations may be considered when applying a
lifted operation to two temporal values defined over different
time extents. The first one considers that the result is defined
in the intersection of both extents and it is undefined else-
where. The second interpretation considers that the result is
defined in the union of the two extents and a default value

(e.g., 0 for +) is used for combining over the extents that
belong to only one temporal value. We apply the first inter-
pretation when combining two temporal values and apply the
second one to temporal aggregation.

Finally, aggregate operations may also be lifted. Examples
are tCount, tMin, tMax, and tAvg, which combine several
temporal values, yielding a new temporal value where the
traditional aggregate functions count, min, max, and avg are
computed at each instant. We illustrate this with the tCount
operation in Fig. 3b, explained in the next example.

Example 2 As a follow-up of Ex. 1, consider the query “Evo-
lution over time of the number of employees by department.”
This query can be expressed by the following aggregation:

ADNo,tCount(Time) (EmpDept).

Fig. 3b shows the result of this aggregation represented as a
temporal value (a tint). Since the timeline is discrete (recall
Def. 1), each 7; is actually a set of instants, thus, the traditional
count is applied at each instant of the timeline of the result.

O

2.4 Reconciling tuple and attribute timestamping

We explain next how the tuple- and attribute- timestamping
approaches can be reconciled, so that users can choose the
approach that best fits the application requirements, while
being able to easily switch between them. Figure 1 shows a
concrete example of two different ways of encoding the same
information using either attribute- or tuple-timestamping.
At a more conceptual level, Fig. 4 depicts a commutativity
diagram illustrating the fact that we can encode tempo-
ral information using either tuple or attribute timestamping
while leveraging efficient mechanisms to transform between
the two representations. For example, we can start with a
tuple-timestamped representation, transform it into an at-
tribute-timestamped one, apply a temporal operation, and
finally transform the result back into a tuple timestamped
representation. In this way, users can choose the most appro-
priate representation on a case-by-case basis. We explain next
how the tuple- and attribute- timestamping representations
complement each other by showing how some operations
are more efficiently computed in one of the representations.

Consider temporal aggregation which is a costly operation[6,
7]. Example 2 shows that, starting from a tuple-timestamping
representation, we can represent the result of a temporal
aggregation as a temporal value. The reason for this is that
temporal aggregation is more efficiently computed using
attribute-timestamping. To take advantage of the above, we
need to be able to switch between representations when
required. Figure 5 shows how we can use the unnest opera-
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tion to transform from an attribute- to a tuple-timestamping
representation.

As another example, we show next how both representa-
tions can be used to solve the partition problem introduced
in Sect. 1 and Fig. 1, where we have table Stocks(Stockld,
Price) with three time series of stock prices represented
using attribute timestamping. To partition this table into
three tables with approximately the same number of couples
(value,timestamp), we use tuple timestamping to compute
the period covered by each one of the three partitions. For
this, we first create the table AdaptiveBins as follows.

CREATE TABLE AdaptiveBins(Binld, Period) AS
WITH Times(T) AS (
SELECT unnest(timestamps(Price)) AS T
FROM Stocks ),
MaxTime(MaxT) AS (
SELECT MAX(T) FROM Times ),
Bins1(Binld, T) AS (
SELECT NTILE(3) OVER(ORDERBY T), T
FROM Times ),
Bins2(Binld, T, RowNo) AS (
SELECT Binld, T, ROW_NUMBER()
OVER (PARTITION BY Binld ORDER BY T)
FROM Bins1)
SELECT Binld, span(T, COALESCE(LEAD(T, 1)
OVER (ORDER BY T), MaxT)) AS Period
FROM Bins2, MaxTime
WHERE RowNo = 1;

Table Times extracts all timestamps in the Stocks table.
Table MaxTime obtains the maximum timestamp in the table.
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Table Bins1 applies the NTILE window function to divide the
timestamps sorted in ascending order into three bins with
approximately the same number of records. Table Bins2 adds
the row number to the rows in each bin. Finally, the main
query keeps the rows with row number equal to 1 to create
with the span function the periods covered by each parti-
tion. For this, the LEAD window function adds to each row
the timestamp of the next consecutive row and COALESCE
assigns to the last row the maximum timestamp in the table.
As a result, table AdaptiveBins contains three rows com-
posed of the Binld and the associated Period. Note that most
of the work is done over the timestamped representation pro-
duced by the unnest operation that creates the table Time.
Now we can create the partitioned table.

CREATE TABLE StocksPart(Binld int, LIKE Stocks)
PARTITION BY LIST(Binld);

CREATE TABLE StocksPart1 PARTITION OF StocksPart
FOR VALUES IN (1);

CREATE TABLE StocksPart2 PARTITION OF StocksPart
FOR VALUES IN (2);

CREATE TABLE StocksPart3 PARTITION OF StocksPart
FOR VALUES IN (3);

Finally, we fill the partitions as follows.

INSERT INTO StocksPart

SELECT Binld, Stockld, atTime(Price, Period) AS Price
FROM Stocks, AdaptiveBins

WHERE atTime(Price, Period) IS NOT NULL;

The query above uses the atTime function to restrict the
temporal float attribute Price in table Stocks to the time period
indicated in the second argument.

In summary, the tuple versus attribute timestamping
debate, dating from the 1990ss, is still open. SQL has adopted
the tuple-timestamping approach and provides data modifi-
cation operations (insert, delete, update) taking into account
the temporal semantics. However, SQL does not provide a
temporal generalization of the relational algebra. As a conse-
quence, to implement the relational operators the user needs
to write complex SQL queries, as we discuss in Sect. 5.

3 A concrete model for temporal databases

This section presents a concrete model corresponding to the
abstract model defined in Sect. 2, as implemented in Mobil-
ityDB.* A complete description of the model can be found
in [41].

MobilityDB provides collection types, namely, set, span,
and span set types, for representing finite subsets of the
domains of base or time types. Set fypes represent a set of
distinct values. Examples are intset or dateset, which are
defined over the int and date types provided by PostgreSQL.

4 https:/mobilitydb.com/.
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Span types represent ranges of base or time values and are
defined by lower and upper bounds, that can be inclusive
or exclusive. Examples are intspan and datespan. Span set
types represent set of disjoint spans. Examples are intspanset
and datespanset.’

3.1 Tuple timestamping

MobilityDB implements tuple timestamping by means of set
operations on time types, which are defined at two granu-
larities: date or timestamptz (timestamp with time zone).
Four times types are used for defining finite subsets of the
time domain at each granularity: date, dateset, datespan,
and datespanset, as well as timestamptz, tstzset, tstzspan,
and tstzspanset. We describe next these types using the date
granularity.

A date value represents a time instant at a day granularity.
A dateset value represents a set of distinct date values. It
must contain at least one element and the elements must be
ordered. An example is

SELECT dateset '{2021-01-01, 2021-01-03};

A value of the datespan type has two bounds, the lower
and the upper bounds, which are date values. The bounds
can be inclusive (represented by ‘[ and ‘T’), or exclusive
(represented by ‘(’ and )’). A datespan value with equal and
inclusive bounds corresponds to a date value. An example
of a datespan value is

SELECT datespan '[2021-01-01, 2021-01-03);

A datespanset value represents a set of disjoint datespan
values. It must contain at least one element and the elements
must be ordered. An example is:

SELECT datespanset {[2021-01-01, 2021-01-03),
[2021-01-04, 2021-01-06)}';

MobilityDB provides an efficient implementation® of the
time types and its operations (see Def. 3) based on a sweepline
algorithm. As discussed in Sect. 2 (we will give more details
in Sect. 5), the intersection and the difference of two time
types are used for the temporal join and the temporal dif-
ference operation, respectively (Defs. 3, 9, and 11). We next
give an example of a table representing the variation of prices
of items, using the tuple timestamping model in MobilityDB.

CREATE TABLE Items_TS (itemld varchar(5),
itemDesc varchar(30), unitPrice float, VT datespanset);

The attribute VT represents the valid time of tuples and is
represented with values of type datespanset. An instance of
this table is given next.

> The span and span set types in MobilityDB correspond to the range
and multirange types in PostgreSQL, but they have a more efficient
implementation.

6 https://libmeos.org/documentation/datastructures.

itemld | itemDesc | unitPrice VT
i’ ‘Milk’ 25.0 {[2021-01-01, 2021-07-01)}
i1’ ‘Milk’ 30.0 {[2022-01-01, 2022-04-01)}
2 ‘Bread’ 45.0 {[2021-04-01, 2022-01-01)}
2 ‘Bread’ 60.0 {[2022-01-01, 2022-11-01)}

3.2 Attribute timestamping

MobilityDB provides temporal types for representing val-
ues that evolve across time.” The temporal types tbool, tint,
tfloat, and ttext are, respectively, based on the PostgreSQL
types bool, int, float, and text.® Temporal types may be dis-
crete or continuous depending on their base type. Discrete
temporal types (such as tbool, tint, or ttext) evolve in a
stepwise manner, while continuous temporal types (such as
tfloat) evolve in either a linear or stepwise manner. The dura-
tion of a temporal value states the time extent at which the
evolution of values is recorded. Temporal values come in
three durations, namely, instant, sequence, and sequence set.
A temporal instant value represents the value at a time instant,
such as

SELECT tfloat '17.1@2022-01-01 08:00:00';

A temporal sequence value represents the evolution of the
value during a sequence of time instants, where the values
between these instants are interpolated using either a dis-
crete, stepwise, or linear function. An example with discrete
interpolation is

SELECT tint '{10@2022-01-01 08:00:00,
20@2022-01-01 08:05:00, 15@2022-01-01 08:10:00};

where the value is defined at the given timestamps and unde-
fined everywhere else. An example of a temporal sequence
value with step interpolation is

SELECT tint '(10@2022-01-01 08:00:00,
20@2022-01-01 08:05:00, 15@2022-01-01 08:10:00]";

Finally, a temporal sequence value with linear interpola-
tion is shown next:

SELECT tfloat '(10@2022-01-01 08:00:00,
20@2022-01-01 08:05:00, 15@2022-01-01 08:10:00]";

The value of a temporal sequence is interpreted assuming
that the time period defined by every pair of consecutive val-
ues v1@t1 and v2@t2 is lower inclusive and upper exclusive,
unless they are the first or the last instants of the sequence
and, in that case, the bounds of the whole sequence apply.
Furthermore, the value of the temporal sequence between
two consecutive instants depends on whether the data type
is discrete or continuous. For example, the tint sequence

7 Currently, MobilityDB provides temporal types only at the times-
tamptz granularity.

8 MobilityDB also provides the temporal types tgeompoint and
tgeogpoint, which are based on the PostGIS types geometry and geog-
raphy restricted to 2D and 3D points.
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above represents that the value is 10 during (2022-01-
01 08:00:00, 2022-01-01 08:05:00), 20 during [2022-01-01
08:05:00, 2022-01-01 08:10:00) and 15 at the end instant
2022-01-01 08:10:00. On the other hand, the tfloat sequence
above tells that the value evolved linearly from 10 to 20 dur-
ing (2022-01-01 08:00:00,2022-01-01 08:05:00) and from 20
to 15 during [2022-01-01 08:05:00, 2022-01-01 08:10:00].
MobilityDB also allows representing sequences with step-
wise interpolation when the type is continuous, for example:

SELECT tfloat 'Interp=Step;(10.1@2022-01-01 08:00:00,
20.2@2022-01-01 08:05:00, 15.2@2022-01-01 08:10:00];

Finally, a temporal sequence set value represents the evo-
lution of the value at a set of sequences, where the values
between them are unknown, for example:

SELECT tfloat

'{[17.2@2022-01-01 08:00:00, 17.5@2022-01-01 08:05:00],
[18.2@2022-01-01 08:10:00, 18.5@2022-01-01 08:15:00]};

Temporal types have arich set of operations corresponding
to the ones defined for the abstract model in Sect. 2 (Tables 1
and 2). As discussed in [41], to ensure the closure of opera-
tions, when the operands of a lifted operation have a linear
interpolation, the result of the operation must also be repre-
sented using linear interpolation.

The table containing the evolution of item prices, shown
in Sect. 3.1 in the tuple-timestamped model, is modeled as
follows in the attribute-timestamped approach, where the unit
price of an item is represented as a temporal float (tfloat).

CREATE TABLE Items_AS (itemld varchar(5) PRIMARY KEY,
itemDesc varchar(30), unitPrice tfloat);

The corresponding instance is shown next.

itemld | itemDesc | unitPrice
i1’ ‘Milk’ {[25.0@2021-01-01, 25.0@2021-07-01),
[30.0@2022-01-01, 30.0@2022-04-01)}
2 ‘Bread’ {[45.0@2021-04-01, 45.0@2022-01-01),
[60.0@2022-01-01, 60.0@2022-11-01)}

Over this table, the query

SELECT itemld,
valueAtTimestamp(unitPrice, timestamptz '2021-04-15"),
valueAtTimestamp(unitPrice, timestamptz '2021-07-15')
FROM Items_AS

returns the following values
'i1'| 25 | NULL
'2'] 45| 45

where the NULL value above represents the fact that the item’s
price for i1 is undefined on 2021-07-15. Consider now the
following query and its result:

SELECT itemld, atTime(UnitPrice,

tstzspan '[2021-04-01, 2021-11-01)")
FROM Items_AS

1" {[25@2021-04-01, 25@2021-07-01)}
i2'| {{45@2021-04-01, 45@2021-11-01)}
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Here, the temporal attributes have been restricted to the
period given in the query.

As an example of temporal aggregation, the next query
asks for the average unit price across time.

SELECT tAvg(unitPrice)
FROM Items_AS

Below we show the result, and Fig. 6 shows such result graph-
ically.

{[25@2021-01-01, 25@2021-04-01), [35@2021-04-01,...
[.... 45@2022-04-01), [60@2022-04-01, 60@2022-11-01)}

To compute the temporal aggregate operations, a skiplist’
is used. We explain this implementation using the exam-
ple of Fig. 3b that shows how to compute the temporal
count (tCount) at the abstract level. Figure 7a shows three
records and their timespans, and, at the bottom, the count of
the number of records at any time instant. Figure 7b shows,
schematically, the iterative procedure to compute the aggre-
gation using the skiplist. The list at the top contains the
interval for record r1. When record r2 arrives, the list is split
to accommodate the intervals for this record: between f, and
14 there are two valid records (count = 2) and only one in
the other intervals. When r3 arrives, we must make room for

9 https://libmeos.org/documentation/aggregation/.
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another element, since now there are three elements between
t3 and t4. The interval [7¢, 73] is also split. The bottom of the
figure shows the skiplist after processing r3.

3.3 Reconciliation in the concrete model

We conclude the section showing how we can use Mobil-
ityDB to apply the most appropriate representation for
different operations, as discussed in Sect. 2.4. Initially, the
user chooses the design that best fits the application pur-
poses, in this case, tuple timestamping. The query below
shows how we use both approaches to compute the tMax
operation, that means, the evolution of the maximum price
of the items across time.

WITH TempPrice(itemld, itemDesc, unitPrice) AS (

SELECT itemld, itemDesc, merge(tfloat(unitPrice,

VT:tstzspanset, 'step’) ORDER BY VT)

FROM Items_TS

GROUP BY itemld, itemDesc ),
TempMaxPrice(unitPrice) AS (

SELECT tMax(unitPrice)

FROM TempPrice )
SELECT (rec).value, (rec).time::datespanset AS VT
FROM ( SELECT unnest(unitPrice) AS rec

FROM TempMaxPrice ) ;

The result of this query is shown next:

25]{[2021-01-01, 2021-04-01)}
45 | {[2021-04-01, 2022-01-01)}
60 | {{2022-01-01, 2022-11-01)}

The query first performs a transformation from the
original tuple-timestamping representation to the attribute
timestamping one, yielding the table TempPrice (which is,
basically, table Items_AS above. Table TempMaxPrice con-
tains the result of the tMax temporal operation. The main
query transforms back this result into a tuple timestamp-
ing form. Note that these transformations between models
and the application of the temporal operation corresponds to
the operations in the commutativity diagram in Fig. 4. Also
note that, as in relational databases, the user may decide to
physically materialize frequently used views in both repre-
sentations. However, this would be redundant in most cases,
since MobilityDB is very efficient in performing these trans-
formations.

4 Temporal data warehouses

In this section we first explain the basic notions of temporal
data warehousing, and then propose the three implementa-
tions over which we develop our study.

4.1 Non-temporal data warehouses

DWs are typically represented using a multidimensional
model, where data are perceived as an n-dimensional space
composed of facts and dimensions. A fact is a subject of
interest, e.g., a business event. Each observation in a fact is
called a fact member. A fact is quantified by one or more
measures, usually numerical quantities. Dimensions provide
context to facts, e.g., sales events can be represented as a
three-dimensional Sales fact with dimensions Product, Time,
and City, and a measure Amount, where the dimensions rep-
resent information on when and where a product was sold at
a certain price. Dimensions are organized in levels, which are
described by attributes. For example, a level Day provides all
possible values for dimension Time. Instances of a level are
called level members. A DW may contain multiple levels and
multiple facts may share these levels. The bottom level in a
dimension determines the granularity of the latter, that is,
the level of detail at which measures are recorded. An aggre-
gation relationship relates a child and a parent levels and
enables the aggregation of measures at various granularites,
e.g., dimension Time may have an aggregation relationship
between Day and Month. These relationships define dimen-
sion hierarchies. As usual, the cardinality of a relationship
between dimension levels or between a fact and a level can
be one-to-one (1-1), many-to-one (m-1), and many-to-many
(m-m).

4.2 Temporal data warehouses

In real-world applications, DW objects may change in con-
tent and/or structure. Content changes (e.g., a modification
in the price of a product) are due to routine business opera-
tions or to correction of existing data, while schema changes
may occur because of changes in the modeled reality, for
example, a modification of the cardinality from m-1 to m-m
in the assignment of products to categories. A DW should be
able to store such time-varying data. This requires extending
the classic DW model, to capture time-varying dimensional
data, for example, along the lines of temporal database the-
ory [31]. We explain this next, remarking that in this paper
we only consider content changes, not schema changes.

A temporal attribute keeps track of the changes in its
value and the time when these changes occurred. Note that a
level may be composed of both, temporal and non-temporal
attributes.

A temporal level is a level for which the application
requires storing the lifespan of its members, that is, the time
during which they exist(ed). The lifespan of a temporal mem-
ber is a subset of the time domain, while the lifespan of a
non-temporal member covers all the time domain. The lifes-
pan can be an interval (a set of consecutive instants) or it
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Fig.8 Conceptual schema of the running example

may have time gaps between two intervals making it a set of
intervals.

A temporal aggregation relationship keeps the evolution
of the links between child and parent members in dimension
hierarchies. It is a function that maps each instant in the time
domain to a relation between the level members. For a non-
temporal aggregation relationship, this function maps all the
instants in the time domain to a fixed relation between level
members. A synchronization constraint must guarantee that
a parent and a child in a relationship instance coexist at each
instant in the validity interval of the relationship and a child
member must be assigned to some parent member throughout
its lifespan.

Throughout the paper we will use, as a running example, a
portion of the DW of the TPC-DS benchmark [26]. Figure 8
shows the schema of the example in the MultiDim concep-
tual model [25, 37] where the temporality of the elements is
represented with pictograms (for brevity, not all pictograms
are shown in the figure). The DW represents sales of items
occurring at a certain date. The items’ lifespan indicates the
periods when items were available for sale. Further, the items’
price, brand, and category change across time. We explain the
model’s notation next.

An instant (O) represents a single point in time, an inter-
val (®) denotes a set of consecutive instants between two
time instants, an instant set (&) represents a set of (distinct)
time instants, and an interval set (&) represents a set of dis-
joint intervals. The symbol & next to the level item, indicates
that it is a temporal level and thus the lifespan of its mem-
bers is kept. The symbol @ next to attribute i_current_price
indicates that this is a temporal attribute and the evolution of
changes in its values is kept. The symbol & next to the rela-
tionships relating item to brand and category tells that the
evolution of the assignment of child members to their parent
member is kept.

4.3 Temporal data warehouse implementations

This section compares alternative implementations of tempo-
ral data warehouses using as example the conceptual schema
in Fig. 8. The usual approach favored by practitioners is
referred to as slowly changing dimension (SCD), shown in
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Fig. 9. As an alternative, Ahmed et al. [1] proposed a tem-
poral DW model (denoted TDW), depicted in Fig. 10, and
associated OLAP operations. Finally, we also discuss the
MobilityDB DW model (MobDB) based on time types shown
in Fig. 11.

4.3.1 The slowly changing dimension model

In a DW, the values of some dimension attributes may change
across time. Kimball and Ross [21] denoted the dimensions
containing such attributes as slowly changing dimensions
(SCD). They proposed three basic implementation tech-
niques to track the changes in attribute values and denoted
them “types.”' Type 1 refers to changes that occur when an
error is found in the data. In this case, the errors are fixed
by overwriting the existing data, thus, no evolution is main-
tained. In Type 2 (the model most usually followed and the
one we use in this paper), a new version of a level mem-
ber is created for every change in any of its attribute values.
A flag attribute or two time attributes representing a valid-
ity interval are used to represent the current version of level
members. In this way, an unlimited number of versions of a
level member can be created, but a surrogate key is required
to uniquely identify each version. Finally, in Type 3, only
the last two values of an attribute are kept, in two different
columns. For example, in a Product dimension, we may have
two attributes, namely Category and newCategory. When a
product’s category changes, the new value is stored in the
newCategory column. If a subsequent change occurs, the
values are shifted and the current value in the newCategory
overwrites the current one in the Category column while the
new value is stored in the newCategory column.

Figure 9 shows an SCD Type 2 implementation of the con-
ceptual model of Fig. 8, based on the so-called star schema,
where dimension tables are denormalized, to favor query
performance. An alternative design, based on the snowflake
schema, would normalize the dimension tables, leading to
a higher number of joins. To keep track of the items’ evo-
lution, attributes i_rec_start_date and i_rec_end_date are
added to the dimension table scd_item. These attributes rep-

10 Kimball also proposed SCD Types 4 through 7, but we omit them
since they are particular cases not related to this paper.
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Fig. 9 Logical schema of the running example using the SCD Type 2
implementation

resent an interval when all other attribute values in a row
are constant. More precisely, they represent an interval dur-
ing which (1) an item exists; (2) an item’s current price
is valid; (3) an item-brand assignment exists; and (3) an
item—category assignment exists. The value of the attribute
i_rec_end_date of the current record is set to 9999-12-31.
Although i_item_id is a business key of the level item, a sur-
rogate key is required to identify the various versions of the
same item. Thus, i_item_sk is added to the table and serves
as its primary key.

4.3.2 The temporal data warehouse model

The Temporal DW model was proposed as an alternative to
the SCD approach. Figure 10 shows the temporal DW imple-
mentation of the conceptual schema in Fig. 8. We briefly
discuss the model next.

An item’s lifespan is stored in table tdw_item_vt, which
comprises the item’s identifier and a pair of attributes
FromDate and ToDate. Table tdw_item_price stores the
items’ price, and includes attributes FromDate and ToDate.
Attributes i_item_id and FromDate compose the primary key
for each table above. The evolution of the item—brand assign-
ments is kept in table tdw_item_brand, which contains the
item identifier, the brand identifier, and the period during
which the assignment was valid. Finally, the assignment
of items to categories is kept in table tdw_item_category,
which depicts the interval during which an item was asso-
ciated to a category. In this model, there is no need to
create versions of records belonging to a table, and thus
surrogate keys are not introduced. Attributes i_item_id,
i_category_id, and FromDate compose the primary key of
the table tdw_item_category. Table tdw_item_brand fol-
lows a similar rationale.

4.3.3 The MobilityDB data warehouse model

As an alternative to the previous classic temporal DW imple-
mentations, Fig. 11 shows a representation of the conceptual
schema in Fig. 8, using the MobilityDB time data types
explained in Sect. 3. We can see that the lifespan of items
is represented in the table mobdb_item using an attribute of
type datespanset. The same type is used in the three other
tables that keep the evolution of items’ features.

The relationship between items and brands helps us to
explain the rationale of our proposed approach. Notice that
table mobdb_item_brand is designed using tuple times-
tamping, where the periods of validity of each item—brand
combination are represented by means of a datespanset type
(i.e., a set of intervals with granularity date). As a first exam-
ple, suppose that over this representation, we want to compute
the temporal count (i.e., the evolution of the count over time)
of the number of items of a brand. Figure 12a shows that
this can be done by stacking over time the periods when any
item belongs a brand and counting, at each point in time,
how many periods overlap. The figure shows the result for
brand B1 which, across time had between one and three items.
The result is concisely represented in one single tuple using
attribute timestamping. Opposite to this, the tuple timestamp-
ing representation of the result in this example would require
at least three tuples (one for each item in the brand) or even
more, if the database could not handle temporal elements.
Figure 12b, shows another example, where we want to com-
pute the evolution on time of the maximum number of items
of any brand. This could be computed applying a temporal
maximum operation (tMax), over the result of the temporal
count previously computed. We remark that in Fig. 12a we
have shown the computation of the temporal count for brand
b1, while, for clarity, in Fig. 12b we show the temporal count
of three brands, namely b1, b2 and b3. It can be intuitively
seen that reusing the previous computation can be more eas-
ily done over the attribute timestamped representation of the
result.

5 Temporal algebra operators in SQL

Querying and updating time-varying information using stan-
dard SQL is challenging. Snodgrass [28] proposed a temporal
extension to SQL, called TSQL2. Some of its features are
part of the SQL standard [22] and have also been incorpo-
rated into major DBMSs. Since database practitioners still
use standard SQL for manipulating time-varying informa-
tion, Snodgrass [29] has shown how most temporal relational
operations can be written in standard SQL. Zimanyi [40] then
showed how to implement temporal aggregates and temporal
universal quantifiers using standard SQL. From these works,
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d_month_seq ss_ticket number T FromDate
d_week_seq ss_quantity ToDate
d_quarter_seq ss_sales_price tdw_item_price
iﬁ’far Sooc® i item id tdw_item_category —>|  tdw_category
: L_price i_item_id i_category_id
tdw_item_vt EromDate i_category_id i_category
ToDate =

i_item_id EromDate

FromDate ToDate

ToDate

Fig. 10 Logical schema of the running example using using the traditional temporal DW model

date_dim < mobgla)ﬁes;ore_ > mobdb_item <— mobdb_item_brand—~ mobdb_brand

d_date_sk i_item_id i_item_id i_item_id i_brand_id

d_date ss_sold_date_sk i_item_desc i_brand_id i_brand

d_month_seq ss_ticket_number i_item_vt: i_item_brand_vt:

d_week_seq ss_quantity datespanset datespanset

d_quarter_seq ss_sales_price T

d_year <...> -

<.> mobdb_item_price m%g?gggfym— » mobdb_category
i_item_id i_item_id i_category_id
i_item_price i_category_id i_category
i_item_price_vt: i_item_cat_vt:

datespanset datespanset

Fig. 11 Logical representation of the running example using MobilityDB time types

b1, i1 | |
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b1, 13 —

tCount (14243 24 |44
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Fig. 12 a Evolution of the number of items for brand b1; b Maximum
of the temporal count of items per brand across all brands

it follows that in order to foster massive use of temporal fea-
tures in databases, a different approach is still needed.

In this section, we study how to express temporal rela-
tional algebra operations over the three alternative fuple-
timestamping implementations of the TPC-DS conceptual
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schema depicted in Fig. 8. We remark that we start with the
algebra operations because, as we will see Sect. 7, they are
a core part of the OLAP queries over DWs, which typically
aggregate over the results of basic algebra operations [37].
We compare the three approaches in terms of conciseness
and simplicity, leaving performance to Sect. 8. For the sake
of brevity, in this paper we only use the portion of the schema
related to items. In Sect. 7 we apply these ideas to address
OLAP queries in a DW environment.

The reader may be asking why do we design the whole
schema using the tuple-timestamping approach instead of
attribute timestamping, for example, representing the
i_item_price attribute as a temporal float data type (tfloat).
Bothrepresentations would be equivalent. The choice between
the two depends on the application requirements. A typical
query in our case would ask for sales with respect to the
product price. Such a query would take each price of an item
and compute the sales of the item at that price. Implementing
such operation over an attribute timestamping schema would
require to perform the unnest operation depicted in Fig. 5, to
disassemble the evolution of the price for an item into pairs
of the form (value, datespanset) and then to aggregate the
sales for that value. This query would be more efficiently
evaluated using tuple timestamping that would not require
unnesting. On the other hand, Fig. 12a, b show that temporal
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aggregations are computed more efficiently using attribute
timestamping and unnesting the result into tuple timestamp-
ing, which is straightforward, as showed in Sect. 2.4.

In what follows, we carry out our study using the classes
of temporal queries proposed in [29, 40], namely, temporal
selection, projection, join, union, difference, and aggrega-
tion. These queries are shown in Table 3.

Temporal Selection As an example of this operation (Def. 7),
we want to obtain the time when an item has a given brand.

Query 1 “Time when an item has brand B.”
In the TDW implementation, the SQL expression for the
query would read as follows.

WITH ItemBrandBAll(i_item_id, FromDate, ToDate) AS (
SELECT i_item_id, FromDate, ToDate
FROM tdw_item_brand
WHERE i_brand_id = 5004001 )
/+ Coalesce the table above »/
SELECT DISTINCT f.i_item_id, f.FromDate, |.ToDate
FROM ItemBrandBAll f, ltemBrandBAIl |
WHERE f.i_item_id = Li_item_id AND
f.FromDate < |.ToDate AND NOT EXISTS (
SELECT =
FROM ItemBrandBAIl m1
WHERE f.i_item_id = m1.i_item_id AND
f.FromDate < m1.FromDate AND
m1.FromDate <= .ToDate AND NOT EXISTS (
SELECT =«
FROM ItemBrandBAIl m2
WHERE f.i_item_id = m2.i_item_id AND
m2.FromDate < m1.FromDate AND
m1.FromDate <= m2.ToDate ) ) AND
NOT EXISTS (
SELECT =
FROM ItemBrandBAIl m
WHERE f.i_item_id = m.i_item_id AND
( (m.FromDate < f.FromDate AND
f.FromDate <= m.ToDate ) OR
(m.FromDate <= .ToDate AND
|.ToDate < m.ToDate)) );

First, the query filters the rows in the WITH clause; then, the
result is coalesced in the main query. The coalesce opera-
tion combines into one row a set of value-equivalent rows
(i.e., rows that are equal on all their columns except for
FromDate and ToDate), if their time periods overlap. This
is a demanding operation that requires three nested NOT
EXISTS predicates. We select the period [FromDate, ToDate)
obtained from two rows f and | such that there is no gap during
the period; that is, for every row m1 valid within the selected
period there is a row m2 that can extend m1 to the left. This
is implemented by the first two NOT EXISTS predicates in the
query above. The third NOT EXISTS predicate ensures that no
other row m can extend the selected period to the left or to
the right.

Next, we show how the query is expressed over the SCD
Type 2 implementation of Fig. 9. To avoid unnecessary rep-
etition, in what follows we only show the portions of the
queries that differ from those in the TDW implementation.

WITH ItemBrandBAll(i_item_id, FromDate, ToDate) AS (
SELECT i_item_id, i_rec_start_date, i_rec_end_date
FROM scd_item
WHERE i_brand_id = 5004001 )

/* ... Main query coalescing the table above omitted ... »/

We can see that all temporal aspects are kept in a single table
scd_item. Thus, the only difference with the TDW imple-
mentation, is the table from which ltemBrandBAIl obtains its
content. The situation is analogous for all queries in the SCD
implementation.

Finally, we show how the query is expressed over the
schema in Fig. 11 (the MobilityDB DW model) using the
spanUnion operation over time types, which automatically
performs the coalescing operation.

SELECT i_item_id, spanUnion(i_item_price_vt)
FROM mobdb_item_brand

WHERE i_brand_id = 5004001
GROUP BY i_item_id;

To obtain exactly the same result as the query above, the
datespanset in the second column is decomposed into two
columns FromDate and ToDate as follows:
WITH temp(i_item_id, i_item_price_vt) AS (
SELECT i_item_id, i_item_brand_vt
unnest(spans(spanUnion(i_item_price_vt)))
FROM mobdb_item_brand
WHERE i_brand_id = 5004001
GROUP BY i_item_id )
SELECT i_item_id, lower(i_item_price_vt) AS FromDate,
upper(i_item_price_vt) AS ToDate
FROM temp;

The expression unnest(spans(-)) transforms the argument
datespanset into several rows, one for each composing
period, and the functions lower and upper extract the corre-
sponding bounds from each period.

Temporal Projection We now show how the temporal projec-
tion (Def. 8) is expressed in SQL. We omit the details, since
the query is similar to the previous one: first, the table lte-
mAnyBrandAll is computed and then this table is coalesced.

Query 2 “Time when an item was assigned to any brand.”
The query over the TDW implementation reads:

WITH ItemAnyBrandAll(i_item_id, FromDate, ToDate) AS (
SELECT i_item_id, FromDate, ToDate
FROM tdw_item_brand)
SELECT DISTINCT f.i_item_id, f.FromDate, |.ToDate
FROM ItemAnyBrandAll f, ltemAnyBrandAll |
WHERE f.i_item_id = Li_item_id AND
f.FromDate < .ToDate AND NOT EXISTS (
/% ... Coalescing statements omitted ... /)

As mentioned, the SCD implementation is similar to the
TDW one, as shown next.
WITH ItemAnyBrandAll(i_item_id, FromDate, ToDate) AS (
SELECT i_item_id, i_rec_start_date, i_rec_end_date
FROM scd_item)
/* ... Main query coalescing the table above omitted ... »/
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Table 3 Temporal algebra queries and the corresponding relational operator

Query

Operator

Q1: Time when an item has brand B
Q2: Time when an item was assigned to any brand
Q3: Time when an item has brand B and its price is greater that €80

Q4: Time when an item has brand B or its price is greater than €80

QS5:Time when an item has brand B and its price is not greater than €80

Q6: Time when a category has more than three items

Temporal selection
Temporal projection
Temporal join
Temporal union
Temporal difference

Temporal aggregation

50 .
@—@ Price
Case 1 } B1 } Brand
50 .
\ |
Case2 | @ B1 @ ! grlce
‘ ‘ rand
50 .
\ |
Case3 ! @ B1 @ | Erlce
I | rand
50 .
\ |
Case 4 ! @ B1 @ ‘ E;I::d
Result }&{

Fig. 13 The four cases for temporal join

In MobilityDB the query is written as follows.

SELECT i_item_id, spanUnion(i_item_brand_vt)
FROM mobdb_item_brand
GROUP BY i_item_id;

Temporal Join We now compute the time when an item had a
given brand and a given price. This corresponds to a temporal
join (Def. 9). Given one row from each table whose validity
periods intersect, a temporal join will return the brand and
price values together with the intersection of the two validity
periods. As showed in [29], expressing a temporal join in
SQL requires four SELECT statements and complex inequal-
ity predicates in order to verify that the validity periods of the
rows to be combined intersect. This is illustrated in Fig. 13.
Assuming that there are no duplicate rows in the tables (that
is, at each point in time an item has one brand and one price), a
UNION ALL operation can be used to combine the four cases.
Finally, the result is, again, coalesced. The SQL:2023 stan-
dard provides two functions, greatest and least that return,
respectively, the minimum and maximum of their two argu-
ments. Thus, we can write the temporal join in a simpler way.
We refer to [29, 37] for details.

Query 3 “Time when an item has brand B and its price is
greater that €80.”

The SQL solution for this query, over the classic TDW,
reads:

WITH BrandBAndPriceGT80AIl(i_item_id, FromDate,
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ToDate) AS (

SELECT ib.i_item_id,
greatest(ib.FromDate, ip.FromDate) AS FromDate,
least(ib.ToDate, ip.ToDate) AS ToDate

FROM tdw_item_brand ib, tdw_item_price ip

WHERE ib.i_item_id = ip.i_item_id AND
ib.i_brand_id = 5004001 AND ip.i_item_price > 80 AND
greatest(ib.FromDate, ip.FromDate) <
least(ib.ToDate, ip.ToDate) )

/* ... Main query coalescing the table above omitted ... »/

The SQL query for the SCD implementation reads

WITH BrandBAndPriceGT80AII(i_item_id, FromDate,
ToDate) AS (
SELECT i_item_id, i_rec_start_date, i_rec_end_date
FROM scd_item
WHERE i_brand_id = 5004001 AND i_current_price > 80)
/* ... Main query coalescing the table above omitted ... »/

In the TDW implementation, the evolution of brands and
prices of items is kept in different tables and thus, a temporal
joinis needed to combine them, while this information is kept
together in the SCD approach. Thus, the tables in the TDW
model are much smaller than the ones in the SCD one, since
the table scd_item keeps the temporal Cartesian product of
all the corresponding tables in the TDW approach.

The same query is expressed in MobilityDB using the
intersection (¥) operation on two sets of intervals, represented
using the datespanset type. After that, a coalescing using
spanUnion is performed.

SELECT i_item_id, spanUnion(i_brandBAndPriceGT80_vt)
FROM (
SELECT ib.i_item_id, ib.i_item_brand_vt «
ip.i_item_price_vt AS i_brandBAndPriceGT80_vt
FROM mobdb_item_brand ib, mobdb_item_price ip
WHERE ib.i_item_id = ip.i_item_id AND
ib.i_brand_id = 5004001 AND ip.i_item_price > 80 AND
ib.i_item_brand_vt = ip.i_item_price_vt IS NOT NULL
)ASt

GROUP BY i_item_id
ORDER BY i_item_id;

Temporal Union Our next query asks for the times when an
item has a given brand or has a given price. This is an example
of a temporal union operation (Def. 10). To compute this
operation in SQL, we first obtain the tuples that satisfy each
condition and perform their union. Finally, we coalesce the
result of the previous operation.
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Fig. 14 The four cases for temporal difference

Query 4 “Time when an item has brand B or its price is
greater than €80.”
The query over TDW is written as:

WITH BrandBOrPriceGT80AII(i_item_id, FromDate,
ToDate) AS (
SELECT i_item_id, ib.FromDate, ib.ToDate
FROM tdw_item_brand ib
WHERE b.i_brand_id = 5004001
UNION
SELECT i_item_id, FromDate, ToDate
FROM tdw_item_price
WHERE i_item_price > 80)
/* ... Main query coalescing the table above omitted ... »/

Over SCD, the SQL would be expressed as follows, omit-
ting, as before, repeated parts.

WITH BrandBOrPriceGT80AII(i_item_id, FromDate,
ToDate) AS (
SELECT i_item_id, i_rec_start_date, i_rec_end_date
FROM scd_item
WHERE i_brand_id = 5004001 OR i_current_price > 80)
/* ... Main query coalescing the table above omitted ... »/

The corresponding MobilityDB query is given next.

SELECT i_item_id, spanUnion(i_brandBOrPriceGT80_vt)
FROM (

SELECT i_item_id, i_item_brand_vt AS

i_brandBOrPriceGT80_vt

FROM mobdb_item_brand

WHERE i_brand_id = 5004001

UNION

SELECT i_item_id, i_item_price_vt

FROM mobdb_item_price

WHERE i_item_price >80) AS t
GROUP BY i_item_id
ORDER BY i_item_id;

Temporal Difference We now give an example of the temporal
difference operation (Def. 11). To express this operation in
SQL, we must consider the four possible cases shown in
Fig. 14, where an item satisfies the first condition but not the
second one.

Query 5 “Time when an item has brand B and its price is not
greater than €80.”
Over the TDW implementation, we have:

/+ Time when an item has brand B »/
WITH ItemBrandBAll(i_item_id, FromDate, ToDate) AS (
SELECT i_item_id, FromDate, ToDate
FROM tdw_item_brand
WHERE i_brand_id = 5004001 ),
/+ Coalesce the table above »/
ItemBrandB(i_item_id, FromDate, ToDate) AS ( ...),
/= Time when an item's price is greater than 80 +/
ItemPriceGT80AII(i_item_id, FromDate, ToDate) AS (
SELECT i_item_id, FromDate, ToDate
FROM tdw_item_price
WHERE i_item_price > 80),
/= Coalesce the table above */
ItemPriceGT80(i_item_id, FromDate, ToDate) AS ( ...),
/= Temporal difference of ItemBrandB and ItemPriceGT80 +/
ItemBrandBAndNotPriceGT80AIl(i_item_id, FromDate,
ToDate) AS (
/= Case 1/
SELECT b1.i_item_id, b1.FromDate, b2.FromDate
FROM ItemBrandB b1, ltemPriceGT80 b2
WHERE b1.i_item_id = b2.i_item_id AND
b1.FromDate < b2.FromDate AND NOT EXISTS (
SELECT =
FROM ItemPriceGT80 b3
WHERE b1.i_item_id = b3.i_item_id AND
b1.FromDate < b3.FromDate AND
b3.FromDate < b2.FromDate )
UNION
/+ Case 2 +/
SELECT b1.i_item_id, b2.ToDate, b1.ToDate
FROM ItemBrandB b1, ItemPriceGT80 b2
WHERE b1.i_item_id = b2.i_item_id AND
b2.ToDate < b1.ToDate AND NOT EXISTS (
SELECT =
FROM BrandTwoCat b3
WHERE b1.i_brand_id = b3.i_brand_id AND
b2.ToDate < b1.ToDate AND NOT EXISTS (
SELECT »
FROM ItemPriceGT80 b3
WHERE b1.i_item_id = b3.i_item_id AND
b2.ToDate < b3.ToDate AND
b3.ToDate < b1.ToDate ) )
UNION
/= Case 3 «/
SELECT b1.i_item_id, b2.ToDate, b3.FromDate
FROM ItemBrandB b1, temPriceGT80 b2,
ItemPriceGT80 b3
WHERE b2.ToDate < b3.FromDate AND
b1.i_item_id = b2.i_item_id AND
b1.i_item_id = b3.i_item_id AND NOT EXISTS (
SELECT =
FROM ItemPriceGT80 b4
WHERE b1.i_item_id = b4.i_item_id AND
b2.ToDate < b4.ToDate AND
b4.ToDate < b3.FromDate )
UNION
/= Case 4 =/
SELECT i_item_id, FromDate, ToDate
FROM ItemBrandB b1
WHERE NOT EXISTS (
SELECT =
FROM ItemPriceGT80 b2
WHERE b1.i_item_id = b2.i_item_id AND
b1.FromDate < b2.ToDate AND
b2.FromDate < b1.ToDate)
/* ... Main query coalescing the table above omitted ... »/
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The query performs a temporal difference between tables
IltemBrandB and ItemPriceGT80, which are the result of coa-
lescing ItemBrandBAll and ItemPriceGT80AIl. The differ-
ence is computed in table ltemBrandBAndNotPriceGT80AII.
The four inner queries implement (using the NOT EXISTS
predicate) the four cases in Fig. 14. The result is coalesced
in the main query.

Over the SCD implementation we have:

/= Time when an item has brand B »/

WITH ItemBrandBAll(i_item_id, FromDate, ToDate) AS (
SELECT i_item_id, i_rec_start_date, i_rec_end_date
FROM scd_item
WHERE i_brand_id = 5004001 ),

/= Coalesce the table above */

ItemBrandB(i_item_id, FromDate, ToDate) AS (....),

/= Time when an item's price is greater than 80 +/

ItemPriceGT80AIIl(i_item_id, FromDate, ToDate) AS (
SELECT i_item_id, i_rec_start_date, i_rec_end_date,
FROM scd_item
WHERE i_current_price > 80)

/» Coalesce the table above »/

ItemPriceGT80(i_item_id, FromDate, ToDate) AS ( ...),

/= Continues as the query for the TDW approach ... «/

Again, this query and the one corresponding to the TDW
implementation differ in how the tables ItemBrandBAIl and
[temPriceGT80AIl are computed.

In the MobilityDB DW model the query is written:
SELECT i_item_id, spanUnion(i_brandBAndNotPriceGT80_vt)

FROM (
SELECT ib.i_item_id, ib.i_item_brand_vt -
ip.i_item_price_vt AS i_brandBAndNotPriceGT80_vt
FROM mobdb_item_brand ib, mobdb_item_price ip
WHERE ib.i_item_id = ip.i_item_id AND
ib.i_brand_id = 5004001 AND ip.i_item_price > 80 AND
ib.i_item_brand_vt - ip.i_item_price_vt IS NOT NULL )
ASt
GROUP BY i_item_id
ORDER BY i_item_id;

The difference in this case is computed using the difference
(-) operation on two interval sets in the SELECT clause of the
inner query, which makes this query easier to express than in
the TDW or SCD approaches.

Temporal Aggregation The temporal version of the five clas-
sic SQL aggregate operations, as stated in Def. 13, requires a
three-step process: (1) split the timeline into periods of time
during which all values are constant, (2) compute the aggre-
gation over these periods, and (3) coalesce the result. This is
illustrated next.

Query 6 “Time when a category has more than three items.”
The aggregation over the TDW implementation is:

/= Days when the assignment of an item to a category changes »/
WITH CategoryChanges(i_category_id, Day) AS (

SELECT i_category_id, FromDate

FROM tdw_item_category

UNION

SELECT i_category_id, ToDate
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FROM tdw_item_category ),
/= Per category, split the timeline using CategoryChanges »/
CategoryPeriods(i_category_id, FromDate, ToDate) AS (
SELECT « FROM (
SELECT i_category_id, Day AS FromDate,
LEAD(Day) OVER (PARTITION BY i_category_id
ORDER BY Day) AS ToDate
FROM CategoryChanges ) AS t
WHERE ToDate IS NOT NULL ),
/= Categories with more than 3 items »/
CategoryGT3ItemsAll(i_category_id, FromDate, ToDate) AS (
SELECT ic.i_category_id, b.FromDate, b.ToDate
FROM tdw_item_category ic, CategoryPeriods b
WHERE ic.i_category_id = b.i_category_id AND
ic.FromDate <= b.FromDate AND b.ToDate <= ic.ToDate
GROUP BY ic.i_category_id, b.FromDate, b.ToDate
HAVING COUNT(x) > 3)
/* ... Main query coalescing the table above omitted ... »/

Table CategoryChanges gathers, for each category, the
dates at which a category assignment started or ended. Table
CategoryPeriods constructs the periods from such dates.
Table CategoryGT3ltemsAll filters out the previous table,
selecting the categories that have more than three items
assigned to it. Finally, this table is coalesced in the main
query.

The SCD implementation reads:

WITH ItemCategoryAll(i_item_id, i_category_id, FromDate,

ToDate) AS (

SELECT i_item_id, i_category_id, i_rec_start_date,

i_rec_end_date

FROM scd_item),

/= Coalesce the table above »/
ItemCategory(i_item_id, i_category_id, FromDate,
ToDate) AS (...),
/= Days when the assignment of an item to a category changes =/
CategoryChanges(i_category_id, Day) AS (
/= Continues as the query for the TDW approach ... «/

We can see that, with respect to the query for the TDW
implementation, the query above must compute the table
ItemCategory before continuing with the aggregation that
starts from the computation of the table CategoryChanges.
We will see in Sect. 8 that this has a strong impact on the
query performance.

Before showing the MobilityDB solution, we introduce
the whenTrue function, which returns the time when a pred-
icate is satisfied. For example, the query

SELECT whenTrue(tfloat '[1@2000-01-01, 4@2000-01-04,
1@2000-01-07]" #> 3);

returns the time when the value of the temporal float is greater
than three, shown next:
{(2000-01-03 00:00:00, 2000-01-05 00:00:00)}

To express our query, we first compute the temporal count

(Fig. 12a) and then use the whenTrue function to obtain the
periods when the temporal count is greater than three.

WITH ItemNoCats AS (
SELECT i_category_id, tCount(i_item_category_vt)
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FROM mobdb_item_category

GROUP BY i_category_id)
SELECT i_category_id, whenTrue(tCount #> 3)
FROM ItemNoCats
WHERE whenTrue(tCount #> 3) IS NOT NULL
ORDER BY i_category_id;

In conclusion, the queries discussed in this section illus-
trate the benefits of the temporal types approach, imple-
mented in the MobilityDB DW. The temporal types allow
expressing the queries very concisely. In contrast, in classic
temporal databases, most queries require writing long pieces
of SQL code, in particular due to the coalesce operation and
the timeline splitting for temporal aggregation. Indeed, in
the classic temporal approach, we need to write, in every
query, the implementation of the temporal operations and
the required coalescing operation that follows, while in the
temporal types approach, this functionality is provided by
the system. Sections7 and 8 show that similar results are
obtained in a DW environment, also reducing the execution
times of the queries.

6 Temporal OLAP operators

We now define the temporal equivalents of the classic (non-
temporal) roll-up and dice OLAP operators, for the three
implementations in Sect. 4. In what follows, we assume the
reader is familiar with the non-temporal operations. We will
use the example illustrated in Fig. 15. There is an item i;
introduced at instant #; with unit price €10 belonging to
category bj. At 1y, its unit price changed to €15. At 13 it
was assigned to brand bj, and at 14 it was discontinued from
selling. Finally, the product was reintroduced at #5 with unit
price €18 and brand by, and it is available for selling until
today. The evolution of i; and the corresponding instance of
dimension Item are shown in Fig. 15a, b, respectively. We
also assume that item i, belonged to brand b, throughout its
entire lifespan, and item i3 to brand by, also during its whole
lifespan (Fig. 15b).

Temporal Roll-up A non-temporal roll-up operation aggre-
gates fact data up to a dimension level using the parent—child
relations defined in the dimension hierarchies. The temporal
roll-up operation is similar, except that it must consider the
state of the roll-up hierarchy at a specific instant. Depending
on the time instant used to obtain the state of the hierarchy, the
temporal roll-up can be temporally-consistent or time-sliced.
Figure 16 depicts an example scenario to explain these oper-
ations. Figure 16b shows the current state of the aggregation
hierarchy from items to brands.

In a temporally-consistent roll-up, the state of the hierar-
chy is obtained at the time when each fact instance occurred.
For example, if a user wants to know the total quantity
sold for each brand, considering the item-brand assign-

(11,10,b4) | (i1,15,bq) | (i1,15,b2) (11,18,b2)
(1000 T80, G185 B8k
| | | | | | »
\ \ \ \ \ \ >
2] 123 13 1y ts now time
(a)
UnitPrice \ Brand |

[ltemID]
i1 {].()@[tl,tQ),].5@[t2,t4)7 {bl@[t17t3),b2@[t3,t4),
18Q[ts5, now)} bo@Q[t5, now))}
i {12Q[t1, now) } {b2@[t1, now))
i3 {8Q[t1, now) } {b1@Q[¢t1, now))

(b)

Fig. 15 a Evolution of item i; over time; b Instances of level Item

ment valid at the time of the sales, she must perform a
temporally-consistent roll-up. Figure 16¢c shows the result
of a temporally-consistent roll-up on the Sales fact from
Fig. 16a. The sales of each product are aggregated to the
brand to which it belonged at the time indicated in column
Date.

A time-sliced roll-up aggregates measures using the state

of the hierarchy at a fixed instant ¢. For example, to compute
the total quantity sold for each brand, using the item-brand
assignment valid now, we perform a time-slice roll-up con-
sidering the current state of the dimension (depicted in
Fig. 16b). The time-slice roll-up on fact Sales from Fig. 16a
is shown in Fig. 16d. For example, as depicted in Fig. 16D,
the sales of item ij are aggregated to brand by. We remark
that both kinds of roll-up operations are valid in any of the
implementations defined in Sect. 4.3.
Temporal Dice A non-temporal dice operator filters instances
of a fact based on a condition over measure values and
attribute values of related dimension levels. Analogously to
the case of the temporal roll-up, we can have a temporally-
consistent or time-sliced dice. For example, to obtain the
sales of items that are assigned to brand by and have a price
equal or higher than €10, the operator must consider whether
we want to obtain the sales of the products that were assigned
to brand by either ar the time of the sales or that belong to
this brand now. Since the price of an item may also change
over time, the same considerations apply to the price as well.
For example, Fig. 16c shows the result of a time-slice dice
that keeps the items that currently have brand b, and a price
equal or higher than €10. Obviously, we can mix the two
interpretations, for example, by asking sales of items cur-
rently assigned to category b, and that have a price equal or
higher than €10 at the time of the sale.
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Fig.16 aFact Sales where the brands of items at the time of the sale and
now are shown in gray; b Instances of the Brands hierarchy valid now;
¢ Fact Sales after a temporally-consistent roll-up to level Brand using
the state of the hierarchy valid at Sales.Date; d Fact Sales after a time-

7 Temporal OLAP operators in SQL

In this section, we show how to express the temporal OLAP
operations defined in Sect. 6 in the three implementations
presented in Sect. 4.3. For this, we extended the temporal
algebra queries in Sect. 5 with the aggregation of fact data,
yielding temporal OLAP queries. The queries are shown in
Table 4, indicating also the query type. Notice that while
algebra queries have the template “Time when ...’ the cor-
responding OLAP queries have the template “Total sales and
time when . . .” For the sake of clarity, we have created views
for each of the temporal algebra queries of Sect. 5. These
views (named, e.g., Q1_MobDB, Q3_TDW, or Q5_SCD) are
used in the temporal OLAP queries below. In Sect. 8 we
compare their performance over the three implementations.
Temporal OLAP Selection This operator implements a tem-
poral dice operator. As explained in Sect. 6, a dice can be
temporally-consistent or time-sliced. The query below cor-
responds to the former type.

Query 1 “Total sales and time when an item has brand B.”
In the TDW approach, the query is written as:
SELECT q.i_item_id, g.FromDate, q.ToDate,
SUM(s.ss_net_paid) AS TotalSales
FROM store_sales s, date_dim d, Q1_TDW q
WHERE s.ss_sold_date_sk = d.d_date_sk AND
s.ss_item_id = q.i_item_id AND
g.FromDate <= d.d_date AND d.d_date < g.ToDate
GROUP BY q.i_item_id, g.FromDate, q.ToDate
ORDER BY q.i_item_id, q.FromDate;

Notice that the query above uses the view Q1_TDW, which
corresponds to the TDW version of the temporal selection
in Query 1. Further, the WHERE clause ensures that the date
of sale is included in the period obtained in the temporal
selection.

In the SCD implementation, the query reads:
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slice roll-up to level Brand using the state of the hierarchy valid now;
e Result of a time-sliced dice operation on the fact Sales for current
brand b, and current price greater than €10

SELECT q.i_item_id, g.FromDate, q.ToDate,
SUM(s.ss_net_paid) AS TotalSales
FROM store_sales s, date_dim d, scd_item i, Q1_SCD q
WHERE s.ss_sold_date_sk = d.d_date_sk AND
s.ss_item_id = q.i_item_id AND
g.FromDate <= d.d_date AND d.d_date < g.ToDate
GROUP BY q.i_item_id, g.FromDate, q.ToDate
ORDER BY q.i_item_id, q.FromDate;

In this case, since the link between the scd_store_sales and
item tables is done through the surrogate key ss_item_sk, the
SCD version has one join more than the TDW one, which is
also the case for the MobilityDB version for this query, shown
next.

SELECT ib.i_item_id, ib.i_item_brand_vt ASi_brandB_vt,
SUM(s.ss_net_paid) AS TotalSales
FROM store_sales s, date_dim d, mobdb_item_brand ib
WHERE s.ss_sold_date_sk = d.d_date_sk AND
s.ss_item_id = ib.i_item_id AND
i_brand_id = 5004001 AND
ib.i_item_brand_vt » d.d_datespan IS NOT NULL
GROUP BY ib.i_item_id, ib.i_item_brand_vt
ORDER BY ib.i_item_id;

Here, the intersection (*) predicate tests whether the date
of the sale intersects the interval set when the item’s price
satisfies the query condition.

It can be seen that the three versions of the query are
very similar. Thus, in what follows, we only show the TDW
version of them. In Sect. 8, we study the performance of
both the temporal algebra queries in Sect. 5 and the temporal
OLAP queries in this section, in the three implementation
schemes.

Temporal OLAP Projection In an OLAP query, a temporal
projection computes the time when a condition over an evolv-
ing feature is satisfied independently of the specific values
that made the condition true. This is illustrated in the next

query.
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Table 4 Temporal OLAP queries and the corresponding relational operator

Query

Operator

QI: Total sales and time when an item has brand B

Q2: Total sales and time when an item has any brand

Q3: Total sales and time when an item has brand B and its price is greater than €80
Q4: Total sales and time when an item has brand B or its price is greater than €80

Q5:Total sales and time when an item has brand B and its price is not greater than €80

QO6: Total sales and time when a category has more than three items

Temporal OLAP selection
Temporal OLAP projection
Temporal OLAP join
Temporal OLAP union
Temporal OLAP difference
Temporal OLAP aggregation

Query 2 “Total sales and time when an item has any brand.”

This query implements a temporal roll-up to brand taking
into account that the assignment of items to brands evolves
on time. In the TDW implementation the query reads:

SELECT q.i_item_id, g.FromDate, q.ToDate,
SUM(s.ss_net_paid) AS TotalSales

FROM store_sales s, date_dim d, Q2_TDW q

WHERE s.ss_sold_date_sk = d.d_date_sk AND
s.ss_item_id = q.i_item_id AND
g.FromDate <= d.d_date AND d.d_date < g.ToDate

GROUP BY q.i_item_id, g.FromDate, q.ToDate

ORDER BY q.i_item_id, q.FromDate;

Temporal OLAP Join A temporal join in an OLAP query
computes the joint evolution on time of two evolving features
stored in different tables. This is illustrated in the following

query.

Query 3 “Total sales and time when an item has brand B and
its price is greater than €80.”
Over the TDW model, the query reads as follows.

SELECT q.i_item_id, g.FromDate, q.ToDate,
SUM(s.ss_net_paid) AS TotalSales

FROM store_sales s, date_dim d, Q3_TDW q

WHERE s.ss_sold_date_sk = d.d_date_sk AND
s.ss_item_id = q.i_item_id AND
g.FromDate <= d.d_date AND d.d_date < g.ToDate

GROUP BY q.i_item_id, g.FromDate, q.ToDate

ORDER BY g.i_item_id, g.FromDate;

Temporal OLAP Union An OLAP query requires a temporal
union to compute the time when at least one of two conditions
over evolving features is satisfied.

Query 4 “Total sales and time when an item has brand B or
its price is greater than €80.”

SELECT q.i_item_id, g.FromDate, q.ToDate,
SUM(s.ss_net_paid) AS TotalSales

FROM store_sales s, date_dim d, Q4_TDW q

WHERE s.ss_sold_date_sk = d.d_date_sk AND
s.ss_item_id = g.i_item_id AND
g.FromDate <= d.d_date AND d.d_date < g.ToDate

GROUP BY q.i_item_id, g.FromDate, q.ToDate

ORDER BY g.i_item_id, g.FromDate;

Temporal OLAP Difference An OLAP operation requires a
temporal difference to obtain the time when a condition over
an evolving feature is satisfied and another condition is not.

Query 5 “Total sales and time when an item has brand B and
its price is not greater than €80.”

This query performs a temporal roll-up operation to the
brand level with an additional condition that accounts for
the assignment of brands to categories, which evolves over
time. To express this query in the TDW model, we proceed
as follows.

SELECT q.i_item_id, g.FromDate, q.ToDate,
SUM(s.ss_net_paid) AS TotalSales

FROM store_sales s, date_dim d, Q5_TDW q

WHERE s.ss_sold_date_sk = d.d_date_sk AND
s.ss_item_id =i.i_item_id AND
g.FromDate <= d.d_date AND d.d_date < g.ToDate

GROUP BY q.i_item_id, g.FromDate, q.ToDate

ORDER BY q.i_item_id, q.FromDate;

Temporal OLAP Aggregation An OLAP operation requires a
temporal aggregation to obtain summarized values from an
evolving feature, as illustrated next.

Query 6 “Total sales and time when a category has assigned
to it more than 3 items.” This is a temporal roll-up operation,
with an additional condition over the number of items of a
brand.

SELECT q.i_category_id,
greatest(ic.FromDate, g.FromDate) AS FromDate,
least(ic.ToDate, q.ToDate) AS ToDate,
SUM(s.ss_net_paid) AS TotalSales
FROM store_sales s, date_dim d, tdw_item_category ic,
Q6_TDW q
WHERE s.ss_sold_date_sk = d.d_date_sk AND
s.ss_item_id =ic.i_item_id AND
ic.i_category_id = q.i_category_id AND
/= Temporal join between item_category and Q6_TDW «/
greatest(ic.FromDate, g.FromDate) <
least(ic.ToDate, g.ToDate) AND
g.FromDate <= d.d_date AND d.d_date < g.ToDate
GROUP BY q.i_category_id, ic.FromDate,
ictoDate, gq.FromDate, q.toDate
ORDER BY q.i_category_id, g.FromDate;
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8 Experiments

In this section, we compare the performance of the temporal
algebra queries in Sect. 5 (Table 3) and the temporal OLAP
queries in Sect. 7 (Table 4), in the three implementations,
namely SCD (Fig. 9), temporal DW (Fig. 10), and Mobil-
ityDB (Fig. 11). We ran the six queries for both cases and
compared their performance using the TPC-DS Scale Fac-
tors (SF) 1, 10, 50, and 100. The number of rows and the size
of each table are given in Table 5. The SQL scripts and the
data for reproducing the benchmark are available.!!

The store_sales and item tables produced by the TPC-DS
generator had data integrity issues, so the following actions
were taken: (a) Remove sales without order date; (b) Remove
sales whose date does not intersect the item’s validity inter-
val; (¢) Remove sales with no item reference; (d) Remove
items without a valid interval and their corresponding sales
records; (e) Remove sales whose item has no price.

The three implementations were deployed on a Post-
greSQL database, version 16.1, installed on a desktop com-
puter with an AMD Ryzen 9 3900X 12-Core Processor at
3,793 Mhz and 64 GB of memory running WSL version 2
on Windows version 10.

Figure 17 shows (in logarithmic scale) the execution times
(in seconds) of the temporal algebra and OLAP queries at the
various scale factors (SF). As a general comment, querying
temporal data often involves computing the interval when an
object maintains its state, e.g., the interval when an item’s
price remains unchanged. Since in the SCD implementation,
anew record is inserted every time any of its attribute’s values
changes, temporal coalescing is required to obtain the interval
associated with a given value, which is an expensive oper-
ation. In the TDW implementation, each temporal attribute
is stored in a separate table, thus, a new record is inserted
only when a change in the attribute’s value occurs. Therefore,
temporal coalescing is not required. Finally, the TDW imple-
mentation is highly normalized, leading to a higher number
of joins compared with the SCD implementation, where all
the required attributes are present in the same table.

We first discuss the results of the temporal algebra
queries. The left-hand side of Fig. 17 shows that the Mobil-
ityDB implementation outperforms the other two ones (in
some cases, by orders of magnitude), for the four SFs, except
for Q3 (where performance is similar for all the cases and
SFs) and Q4 (where performance is similar for SF100). The
reason follows from the discussion in Sect. 5: the coalescing
operation in MobilityDB takes advantage of the fact that the
time intervals are temporally ordered, while in the other mod-
els, several nested NOT EXISTS predicates must be computed.
We can observe the very poor performance of the TDW and
SCD implementations for Query Q2 and the SCD implemen-

11 https://github.com/MobilityDB/MobilityDB-TPCDS.
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Table 5 Datasets used in the experiments
No of rows/size
Table SF 1 SF 10 SF 50 SF 100
All
store_sales 2,490K 24,906K 124,537K  249,018K
483 MB 4,334 MB 24 GB 47 GB
date_dim 2,191 2,191 2,191 2,191
1,488 kB 1,488 kB 1,488 kB 1,552 kB
SCD
item 17,954 101,757 61,852 203,478
12 MB 63 MB 63 MB 125 MB
Temporal DW
item 8,990 50,957 30,976 101,913
1,768 kB 11 MB 6,432 kB 22 MB
item_ls 8,995 50,994 30,995 101,997
944 kB 5,080 kB 3,096 kB 10,096 kB
item_price 17,944 101,708 61,820 203,389
1,976 kB 11 MB 6,688 kB 21 MB
brand 949 953 953 953
144 kB 144 kB 144 kB 144 kB
category 10 10 10 10
24 kB 24 kB 24 kB 24 kB
item_brand 13,436 76,487 46,491 152,907
1,488 kB 8,272 kB 5,048 kB 16 MB
item_cat 17,063 96,737 58,765 193,417
1,880 kB 10 MB 6,368 kB 20 MB
MobilityDB
item 8,990 50,957 30,976 101,913
4,232 kB 23 MB 14 MB 46 MB
item_price 17,943 101,696 61,812 203,362
2,824 kB 15 MB 9,584 kB 31 MB
brand 949 953 953 953
512 kB 1,128 kB 1,048 kB 792 kB
category 10 10 10 10
32kB 96 kB 72 kB 128 kB
item_brand 13,428 76,425 46,455 152,768
2,240 kB 12 MB 7,584 kB 24 MB
item_cat 16,805 95,156 57,796 190,239
2,672 kB 15 MB 9,064 kB 29 MB

tation for Q6 (temporal aggregation), for all SFs. Recall from
Sect. 5 that, for Q6, the SCD implementation requires addi-
tional computations. For Q3 (temporal join), the performance
of the three alternatives is similar, most likely due to the effect
of the performance of the greatest and least functions used
in the TDW implementation, which encode, as explained in
Sect. 5, the four possible temporal join cases. Also note that,
except for Q3, the TDW implementation outperforms SCD
for all SFs and queries.
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Fig. 17 Execution time in seconds for the temporal algebra and OLAP queries at SFs 1, 10, 50, and 100
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Theright-hand side of Fig. 17 shows the results for the tem-
poral OLAP queries. We see that MobilityDB outperforms
the other two solutions for all queries and SFs except for
Q6 at SF100. Also, for all queries except for Q2 and Q6, the
TDW and SCD alternatives behave similarly. For Q2 and Q6,
TDW outperforms SCD. In the case of Q6, we can see that
MobDB runs faster than SCD and TDW except for SF100,
where the three implementations are timed out after running
for one hour on our hardware. We discuss these results below.

We can see that for all algebra queries, TDW outper-
formed SCD. However, for the OLAP queries (which include
the algebra queries as views), both implementations have,
in most cases, similar performance. The reason is that the
execution time of the OLAP queries is mainly the time con-
sumed by the final OLAP aggregation. However, this is not
the case for the MobDB implementation, because the aggre-
gation is performed more efficiently taking advantage of the
time types.

The case of Q6 (temporal aggregation) is worth more elab-
oration. First, we can see that our approach achieves efficient
performance, as the results for the algebra queries on the left-
hand side of Fig. 17 show, even though temporal aggregation
is known to be an expensive operation [6, 7]. Second, analyz-
ing the query processing strategies we see that PostgreSQL’s
query planner produces different strategies for the TDW and
MobDB implementations (the query plans are available at the
Github site). For the latter, a bottleneck is generated when
performing two hash joins. This bottleneck does not appear
in the TDW strategy that PostgreSQL proposes, since it mate-
rializes intermediate results. The reason is that PostgreSQL
uses a default selectivity estimation of the result of the aggre-
gation which, in the case of MobilityDB, deviates by orders
of magnitude from the actual number of tuples in the result,
and thus PostgreSQL chooses an inefficient order of the joins
required for the OLAP operation. Although this occurs for
all the SFs in Fig. 17, the problem only shows at SF 100 due
to the size of the store_sales table. MobilityDB provides to
PostgreSQL statistics for estimating the selectivity of oper-
ations on time and temporal types, in terms of histograms of
lower and upper bounds. The statistics are accurately com-
puted when at least one of the arguments of the operation is
a base table column such as

i_item_category_vt ¥ '[2021-01-01, 2021-02-01)" or
i_item_category_vt *i_item_brand_vt,

while a default selectivity applies for expressions like

tCount(i_item_category_vt) or
whenTrue(tCount# > 3),

used in Query 6. Thus, although the temporal aggregation
is computed efficiently in MobilityDB, results are strongly
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affected by the processing strategy explained. In future work
we will address this problem.

9 Related work

We now review literature on temporal data management, rel-
evant to our proposal.

Temporal Databases There is a large corpus of work on tem-
poral databases [31] and they still capture the interest of
researchers and practitioners [13]. The two main approaches
for extending relational databases with temporal semantics
are tuple timestamping and attribute timestamping. The for-
mer yields first normal form relations (1NF), while the latter
produces non-first normal form relations (N1NF). Attribute
timestamping was initially proposed by Clifford and Tansel
[10]. Later, in his seminal work, Gadia [12] introduces a tem-
poral algebra and calculus, proving their equivalence. Jensen
etal. [19] propose a temporal conceptual model that captures
the temporal semantics of datain a unified way, timestamping
the tuples of relations with sets of two-dimensional so-called
chronons, thus supporting valid and transaction time. For
mapping between models, the notion of snapshot equivalence
is used. Both tuple- and attribute-timestamped representa-
tions are studied, mapping one to another using a conceptual
model. To the best of our knowledge, this proposal has not
been implemented. Another discussion in temporal databases
refers to the representation of time, which can be point based
or interval based. This is studied in [32]. A point-based
temporal extension to SQL is later proposed by the same
author [33]. Using the point-based approach, Chen et al. [9]
propose a temporal extension to SQL. However, in practice,
the interval-based approach is easier to implement and under-
stand.

A large number of temporal query languages in the early
19905 raised the need for a standardized temporal relational
query language. As a result, TSQL2 [28] is proposed as a
temporal extension to the SQL-92 standard. TSQL?2 intro-
duces a new period datetime data type. Valid, transaction,
and user-defined times are supported in TSQL2. There are
two types of tables, namely, state and event. In the former,
each tuple is timestamped with a time element (a union of
periods), while in the latter each tuple is timestamped with an
instant set. The classic CREATE TABLE, UPDATE, and ALTER
statements in standard SQL are modified to allow the spec-
ification of temporal elements. For data manipulation, the
FROM clause allows coalescing the tuples that have identi-
cal values of non-temporal attributes. Finally VALID() and
TRANSACTION() functions are introduced to access the valid
and transaction times in the WHERE clause.

The SQL:2011 standard [22] includes some temporal
features like a period data type, temporal primary keys, tem-
poral referential integrity constraints, temporal predicates,



Reconciling tuple and attribute timestamping for temporal data warehouses

Page250f28 11

valid, transaction and bitemporal tables, as well as tempo-
ral insertions, updates, and deletions. However, operators
like temporal coalescing [38], temporal joins, and tempo-
ral aggregation are not included in the standard, and the most
popular database vendors provide a limited support for tem-
poral features in their RDBMSs. Therefore, practitioners still
use standard SQL to manipulate time-varying information.
Snodgrass [29] shows how most relational operations can
be written in standard SQL. Zimdanyi [40] then shows how to
implement temporal aggregates and temporal universal quan-
tifiers using standard SQL. Tuple timestamping is adopted in
those proposals.

The work by Dignos et al. [11] is closely related to
the present paper, in particular for the case of so-called
sequenced temporal queries, namely queries that are eval-
uated at each time point (e.g., Queries 3 in Sect. 5 and 6
in Sect. 7). The idea is to reduce a temporal query to non-
temporal operators. For this, the authors follow a four-step
strategy composed of the following steps: (a) interval propa-
gation; (b) interval adjustment; (c) scaling; (d) evaluation of
non-temporal operators. Interval propagation refers to the
duplication of the original intervals, which are later used
for scaling. Interval adjustment is composed of two opera-
tions: normalization and alignment. Normalization splits the
timeline according to the intervals of the tuples in a rela-
tion, and it is used for group-based operators (projection,
difference, union, intersection). It requires to extend SQL
with a NORMALIZE operation. Alignment is used in tuple-
based operations (e.g., joins, selection, Cartesian product),
and splits a tuple of a relation according to the time intervals
of value-equivalent tuples in another relation. It is analo-
gous to the cases explained in Sect. 5 (Queries 3 and 5). The
implementation of the temporal alignment is similar to the
MobilityDB implementation of the set operations on time
values (Sect. 3) except that in MobilityDB the operations
are manipulated by the time types, while in [11] a sweep
plane algorithm is implemented as a PostgreSQL function.
Further, the implementation using skiplists in MobilityDB
makes the operations very efficient. Finally, a query plan is
produced applying a set of reduction rules that transform
queries expressed using temporal relational operators, to a
query expressed in terms of relational operators and the two
new operators. In summary, the proposal in [11] follows
the classic idea of interval-based implementation and tuple
timestamping. The approach requires extending SQL with
the operations commented above, that must be mentioned
explicitly in the queries (e.g., ALIGN, NORMALIZE, SCALE).
Opposite to this, in MobilityDB they are provided built-in,
through two mechanisms: extended data types and attribute
timestamping. As a result, sequence queries in MobilityDB
can be solved easily using temporal operations like tSum,
tCount or tUnion in a very concise way, without requiring
rewriting. The authors proposed a proof-of-concept imple-

mentation of their approach using PostgreSQL 9.5. As far
as we know, the implementation has not been integrated into
PostgreSQL.

Tsikoudis et al. [35] introduce RQL (Retrospective Query
Language), a language for specifying SQL computations
over collections of snapshots of past states of a data store
like Berkeley DB. RQL iteratively runs an SQL query on
each snapshot, collects the results and performs computations
over the latter. As a follow-up, the authors extend this work
presenting an optimization framework called RID [34] that
detects and eliminates redundant computations in queries.
RQL can address some of the queries presented here, and it
is somehow related to [11] since it can be used to address
sequenced queries. However, the sequenced semantics of
a temporal query, which views a temporal database as a
sequence of snapshot databases and evaluates the query
at each of these snapshots, provides a clear semantics for
theoretical studies, but a practical implementation needs
additional considerations [5]. Therefore, we do not include
snapshot-based databases in this work. Finally, Lu et al. [23]
presents a temporal implementation in TDSQL Tencent’s dis-
tributed DBMS, keeping the traditional data types and the
tuple timestamping approach, focusing on data storage and
query rewriting.

MobilityDB [41] is a spatiotemporal DBMS that extends

the type system of PostgreSQL and PostGIS with abstract
data types, to represent spatiotemporal data. MobilityDB
seamlessly extends the DBMS with temporal data types,
not requiring any additional software architecture. Although
MobilityDB was initially designed to manage and query
mobility data, since it provides temporal types over both
alphanumeric and spatial base types, it is actually a temporal
DBMS that can handle both tuple and attribute timestamping.
To address scalability, a distributed version of MobilityDB is
also available [2, 3]. We do not extend here since MobilityDB
was covered in detail in Sect. 3.
Temporal Data Warehousing The most popular approach for
tackling changes in the attribute values of dimension tables in
aDW, is slowly changing dimensions (SCDs) [21]. Since this
is a well-established solution adopted by practitioners, we
chose it as one of the models to compare against our proposal.
We have extensively covered SCDs in previous sections.

The temporal star schema [4] aims at overcoming the
limitations of the SCDs solution. Instead of using a time
dimension table, timestamps are defined for each row in every
table, allowing performing time calculations without joining
the fact table with the time dimension. A single timestamp
in a table means that the data are event-oriented and repre-
sents the time when an event has occurred, while a pair of
timestamps (called period timestamps) indicate that the data
in the table are state-oriented and denote the period during
which a state has persisted. Handling periods raises issues,
which in our approach are solved by the MobilityDB time
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data types. Further, omitting the time dimension makes it
difficult to aggregate data over time and to define particular
information on certain instants (like holidays, weekdays, and
so on). Finally, temporal joins or temporal aggregation are
not considered, and the discussion is limited to just four kinds
of queries. Since the SQL expressions of these queries are
not shown, we do not use this approach to compare against
our proposal.

The starnest schema [15], based on the nested rela-
tional model [27], combines the advantages of the star and
snowflake schemes, avoiding join operations by storing each
dimension in a single nested table, preserving the dimension
hierarchy. The levels of a dimension hierarchy are recursively
nested, from the most generic level to the most specific one.
Each parent level tuple nests the child member sub-tuples as a
value of one of its attributes. If a dimension contains multiple
hierarchies, tables must be duplicated. Based on this work,
the temporal starnest schema is proposed in [14], address-
ing time-evolving dimension members. Timestamps are used
to track the evolution of dimension members. Like in [4],
the time dimension is not made explicit. Instead, valid and
transaction time attributes are included in the fact table and
the temporal dimensions. Temporal nested queries are pro-
cessed in a non-standard query language called BTN-SQL.
The main drawback of this model is its complex structure.
No implementation is reported, so we do not compare this
model against our proposal.

Mahlknecht et al. [24] represent facts timestamped with
intervals presenting three implementations: (a) The instant
model, where each fact is linked through a foreign key from
the time dimension; (b) The period model, where intervals
are represented as two foreign keys to the time dimension; (c)
The period™* model, where a fact is associated with a period
stored in a separate table, linked to the fact table through a
foreign key. The authors present a set of queries that perform
aggregation at every time instant, showing that they are easier
to express in SQL using the period™ model since periods are
explicitly stored. In our approach, these queries are solved by
the built-in datespanset data type, without the need of imple-
menting foreign keys for each fact. Further, our approach can
handle sets of periods in a native fashion. Aggregation along
the time dimension is also performed in [24]. We have shown
that this operation can be natively done in our approach. The
experiments show a clear edge in favor of the period™ model,
which in fact is aligned with our approach. Compared to our
work, a limited variety of temporal queries are supported.
For example, temporal joins and temporal difference are not
studied. Also, unlike the TDW model mentioned below, only
atelic [20] measures are addressed.

To overcome the problems of the works discussed above,
Ahmed et al. [1] introduced the TDW model. We have exten-
sively discussed this model in previous sections. Interested
readers can find detailed information in [37]. Finally, Vais-
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man and Ziményi [36, 37] show that MobilityDB can also
be used as a solution for (spatio)temporal DW.

10 Conclusion

In this paper we revisit the long-time studied tuple versus
attribute timestamping dichotomy in temporal databases and
DWs. Actually, the main reason for the popularity of the
tuple timestamping is that 1NF databases were so far the only
implementation alternative. The release of the MobilityDB
database opens up the possibility of efficiently implementing
attribute timestamping and, at the same time, enhancing tuple
timestamping, taking advantage of the rich collection of time
data types and operations on these types.

To show the feasability of the MobilityDB approach, we
implement a portion of the TPC-DS benchmark using three
alternative implementations: the SCD Type 2 model, the
temporal DW model, and the MobilityDB DW model. We
define six representative queries, implementing the temporal
selection, projection, union, difference, join, and aggrega-
tion operations. Then, we use these six queries as the basis
for providing a temporal extension of the classic roll-up and
dice OLAP operations. Our experiments show that the Mobil-
ityDB approach outperforms the other two ones, except for
the temporal OLAP aggregation query at SF 100, where the
query plan produced by PostgreSQL is suboptimal and thus,
although the temporal aggregation is computed efficiently in
MobilityDB, the execution of the query is strongly affected
by the processing strategy. We will be study this in future
work.

Another future perspective is to generalize the results of
this paper to a distributed setting, using a distributed version
of MobilityDB based on Citus,'? an open source distributed
extension for PostgreSQL, along the lines of the approach
shown in Sect. 2.4. MobilityDB partitions spatiotemporal
data using multidimensional tiling, where the n-dimensional
space is split into grid tiles that are assigned to cluster nodes.
With respect to traditional hash-based partitioning, this pre-
serves data locality, which is essential for location-based
queries. Since metadata about the spatiotemporal extent cov-
ered by cluster nodes are kept by the query planner, only
the nodes that cover the extents needed by the query are
requested to work. We plan to generalize multidimensional
tiling for OLAP, which requires to support the high number
of dimensions in a DW, instead of one to four dimensions as
is spatiotemporal data.
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