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A moving body is a geometry that may translate and rotate over time. Computing the time-varying distance

between moving bodies and surrounding static and moving objects is crucial to many application domains

including safety at sea, logistics robots, and autonomous vehicles. Not only is it a relevant analytical

operation in itself, but also it forms the basis of other operations, such as finding the nearest approach

distance between two moving objects. Most moving objects databases represent moving objects using a

point representation, and the computed temporal distance is thus inaccurate when working with large

moving objects. This article presents an efficient algorithm to compute the temporal distance between a

moving body and other static or moving geometries. We extend the idea of the V-Clip and Lin-Canney

closest features algorithms of computational geometry to track the temporal evolution of the closest pair

of features between two objects during their movement. We also present a working implementation of this

algorithm in an open-source moving objects database and show, using a real-world example on AIS data,

that this distance operator for moving bodies is only about 1.5 times as slow as the one for moving points

while providing significant improvements in correctness and accuracy of the results.
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1 INTRODUCTION

When working with moving bodies, geometries that may translate and rotate over time, the

time-varying (temporal) distance is of importance in many domains. For instance, it will help

analyze near-collision cases among sea vessels or autonomous vehicles. It will also help to analyze

the interaction of logistics robots and their surroundings. Existing solutions in the domain of
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Fig. 1. Nearest approach distance in moving point and moving body representation. The moving point dis-
tance is 9.8m, compared to the 3.7m computed using moving bodies.

moving objects databases approximate the moving body by a moving point, e.g., its centroid. This

representation, although memory efficient and easier to manipulate, completely disregards the

spatial extent of the moving bodies and can result in inaccurate or wrong results. In the example

shown in Figure 1, the difference between computing the distance using the moving point pre-

sentation vs. using the moving body representation is illustrated. The nearest approach distance

between the objects is in reality less than half as much as what is computed using the moving point

representation.

In the domain of computer graphics, computing the distance between two rigid bodies is a

well-known and heavily researched problem. Some of the presented algorithms are optimized for

distance computations on moving bodies [10, 16, 19]. These solutions, however, compute the evolu-

tion of the distance by iteratively calling a static distance function at subsequent snapshots. None

of these solutions makes use of the parameters of the movement, mostly because they do not as-

sume that the motion is known in advance. These solutions are thus not viable for tracking the

continuous distance when the complete movement of the bodies is known, as is the case when ana-

lyzing historical moving objects data in a moving objects database. For example, when computing

the nearest approach distance between two moving bodies, the minimum distance can be missed

if it is reached between two calls of the static distance algorithm. To clarify, the term distance de-

notes the smallest Euclidean distance between two static geometries, and the minimum distance

thus relates to the smallest distance value reached during the movement of the geometries.

In this article, we present an efficient algorithm to compute the temporal distance between two

moving bodies in 2D, when both the geometry and the movement of the bodies are known. The

algorithm computes a list storing the evolution of the closest features (vertices of edges) between

the moving bodies. This list, together with the moving bodies themselves, completely defines the

distance function between these objects. It can then be used to compute the distance at any time

during the movement. This algorithm can be used to compute the distance between a pair of

moving objects or between a static and a moving object. Note that the latter case is obtained by

simply setting all the movement parameters of the static object to zero. We also implement and

evaluate the proposed algorithm in a moving objects database.

Concretely, the main contributions of this article are as follows:

• Presenting an efficient algorithm to compute the time-varying distance between convex mov-

ing bodies

• Proposing an algorithm for non-convex polygons making use of the solution for convex

polygons

• Developing optimizations for the algorithms in case the polygons are non-rotating

• Providing an implementation of multiple distance-related operators using the proposed al-

gorithm in an open-source RDBMS

• Assessing the algorithms and their implementations on both synthetic and real-world data
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The rest of the article is organized as follows: Section 2 discusses the related work. We define

a representation of moving objects in Section 3, which is compatible with the existing representa-

tions of moving points and moving bodies in moving objects databases [12, 27]. Section 4 describes

the proposed algorithm for computing the evolution of closest features between moving bodies.

Section 5 describes an optimization for this algorithm. Section 6 then presents the implementation

of the proposed algorithm in the open-source moving object database MobilityDB. Section 7

validates the theoretical complexity of the proposed algorithms and assesses their running time

in an actual database use-case. To conclude, Section 8 summarizes the article and gives some final

remarks.

2 RELATED WORK

The moving objects database research defines three main types of moving objects: moving points,

deforming moving regions, and non-deforming moving regions (also called moving bodies). Mov-

ing points are commonly represented using piecewise linear functions, and computing the tempo-

ral distance between them is thus a trivial task. As the distance between two linearly moving points

is a square root of a quadratic function, the difficult part consists of representing and storing this

function in the database. In SECONDO [4], the data model allows to represent this function as a

temporal float object. In MobilityDB [31], an approximation is computed and stored as a piecewise

linear function that maintains the extreme points of the initial distance function. One important

application of such a function is solving continuous nearest neighbor queries [9, 11, 28].

A distance function for deforming moving regions is presented in [4]. It accepts a moving point

and a moving region, as well as a pair of moving regions. The algorithm combines a brute-force

technique, computing the distance with every segment of the regions, with a filtering technique,

which limits the actual number of segments to improve the performance. The data model repre-

sents the deforming moving region as a set of linearly moving segments, i.e., the region edges.

This model cannot represent non-deforming moving regions that move by translating and rotat-

ing around a given rotation center. Data models have thus been proposed to represent this latter

type [12, 27]. However, to our knowledge, the problem of computing the temporal distance be-

tween non-deforming moving regions, i.e., moving bodies, has not been addressed before. This

article aims at developing such an algorithm.

In the field of computational geometry, there are efficient solutions for computing the distance

between static 2D polygons. Using binary search and no prior information, it is possible to de-

termine the distance between two convex static polygons in O (loд(n)) time, where n is the total

number of vertices of the two polygons [3, 7, 30]. This complexity is a lower bound when no extra

information is given about these two polygons. When working with non-convex polygons, the

main idea is to decompose the polygon into convex parts and build a bounding hierarchy to re-

duce the number of operations applied to each convex part. These bounding hierarchies can be

made of spheres/circles [6, 14, 24, 26] or bounding boxes [17, 22], either axis aligned or not. [24]

mentions an average complexity of O (nloд(n)) for 2D distance computations between non-convex

polygons.

Here, in the case of moving polygons, we observe that the distance is computed multiple times

at close time intervals. When working with convex polygons, it is thus often correct to assume

that the closest points between these two polygons will not move much between two distance

computations. Lin and Canney [16] describe an algorithm to compute the distance between two

convex static polygons, as well as the two closest features (vertices or edges) of the two polygons

that are at this minimum distance. This algorithm takes not only the two polygons as input but also

an estimate of the closest features. In the worst case, the algorithm has a linear time complexity

O (n) but can finish in constant time if the estimate of the closest features was not far from the
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real closest features. When iteratively computing the distance between two moving polygons, the

closest feature of the previous computation is used as an estimate of the next one. This allows for

significant time improvements.

Improvements on the Lin-Canney algorithm have also been made, such as the V-Clip [19] and

H-Walk [10] algorithms. V-Clip is similar to Lin-Canney but more robust and easier to implement,

while H-Walk tries to improve the linear worst-time complexity of both Lin-Canney and V-Clip

by representing the object as a hierarchy of convex polygons. A similar hierarchical technique

is used in [23] for the purpose of collision detection. An overview of existing static and iterative

algorithms for collision detection and distance computation can be found in [18].

The algorithms presented in this article are based on ideas from V-Clip and Lin-Canney but

differ from the existing algorithms by taking into account the movement parameters of the moving

objects, as well as returning a temporal distance function instead of returning distance values at

distinct timestamps. This setting is useful when the movement is known in advance, such as in a

database setting storing historical movement data.

As detailed in Section 4, the presented algorithm starts by computing the initial closest features

at the start of the movement. This is done using any one of the existing algorithms discussed

above. Similarly, as discussed at the end of Section 3, the V-Clip algorithm can be used to check

the validity of the result at the end of the algorithm in constant time.

3 PRELIMINARIES

In this section, we present a simple model for moving points and moving bodies that will be used

throughout the article. This model is in agreement with more general models described in previous

research [4, 8, 12, 27, 31] but restricts the movement of an object to a single segment. Indeed, if

the movement is composed of a sequence of these segments (as is usually the case), the algorithm

presented in this article can be applied independently to each segment. We discuss how this can

be done for the data models presented in [27, 31] at the end of this section.

A 2D moving object is described using a static geometry and associated movement parameters.

In this article, the static geometry will be either a point p = (xp ,yp ) or a simple polygon R, and

the corresponding moving objects will thus be called moving point and moving body, respectively.

The term moving body refers to the fact that the polygon is non-deforming during its movement.

We will use the terms body and polygon interchangeably in the rest of the article.

A simple polygon R is represented using a list of n vertices stored in counter-clockwise order,

together with a rotation center (xc ,yc ) assumed to be inside the polygon. This article does not

take into account holes in the polygon:

R = [(x1,y1), . . . , (xn ,yn ) |(xc ,yc )]. (1)

To simplify the notation, we will assume that (xn+i ,yn+i ) = (xi ,yi ). The modulo operations will

thus be omitted in the rest of the equations. To further simplify the notation, when talking about a

single vertex, we will use vi and (xi ,yi ) interchangeably. Edges of the polygon are denoted ei and

represent the linear segment between vi and vi+1.

We define a point on the edge ei as ei (s ) = (xi (s ),yi (s )) = vi ∗ (1−s )+vi+1∗s , with s ∈ [0, 1]. The

notation vi ∗ s corresponds to a scalar multiplication and vi +vi+1 is the standard vector addition.

This parametric definition of a point along an edge is the same as in [19]. The distance between

a point p = (xp ,yp ) and an edge ei of the polygon can thus be computed using Equation (2). The

notation d (ei ,p) is an abuse of notation as ei is not a vector, but it is to be understood as the

minimum Euclidean distance between the edge ei and p:

d (ei ,p) =mins ∈[0,1]

{√
(xi (s ) − xp )2 + (yi (s ) − yp )2

}
. (2)
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As mentioned before, a moving object combines a static geometry with movement parameters

related to that geometry. In the case of a moving point, its movement is defined by a single trans-

lation (dx ,dy). The coordinates of a moving point p (t ) = (xp (t ),yp (t )) can thus be computed at

a given t ∈ [0, 1] using Equation (3). The parameter t represents time, normalized to [0, 1]. Thus,

t = 0 corresponds to the start of the movement and t = 1 corresponds to the end of the movement.

This will hold for all future equation in this article:

xp (t ) = xp + t ∗ dx
yp (t ) = yp + t ∗ dy.

(3)

Similarly, the movement of a polygon is defined by a translation (dx ,dy) and a rotation θ around

its rotation center (xc ,yc ). In theory, the algorithm described in this article works for any value

of θ . In practice, however, we will assume that θ is a (sufficiently small) constant and we can thus

omit it from the complexity estimations of Section 4. In [27], for example, the value of θ for a single

segment is restricted between −π and π .

A moving polygon R (t ) is thus represented by a list of moving vertices. At any given t ∈ [0, 1],

the coordinates of the vertices are computed using Equation (5):

R (t ) = [v1 (t ), . . . ,vn (t ) |vc (t )] (4)

xi (t ) = (xi − xc ) ∗ cos (t ∗ θ ) − (yi − yc ) ∗ sin(t ∗ θ )

+ xc + t ∗ dx
yi (t ) = (xi − xc ) ∗ sin(t ∗ θ ) + (yi − yc ) ∗ cos (t ∗ θ )

+ yc + t ∗ dy.

(5)

We define the moving edge ei (t ) as being the moving linear segment between the moving ver-

tices vi (t ) and vi+1 (t ). Note that Equation (5) guarantees non-deformation. The length of the seg-

ments is thus constant during the movement. Like in the static case, we define a point on this edge

as ei (s, t ) = (xi (s, t ),yi (s, t )) = vi (t ) ∗ (1 − s ) +vi+1 (t ) ∗ s , with s ∈ [0, 1].

These definitions of a moving point and moving polygon only represent a single "linear" seg-

ment of movement. In practice, however, the movement of an object is composed of a sequence of

segments. Some data models group these segments together into a single data object [27, 31], while

others define the movement as a set of individual segments [4, 8, 12]. In both cases, the algorithm

can be applied on the individual segments independently. The presented algorithm is thus only

described for a single segment.

Note that the algorithm requires an initialization step, as described in Section 4. This initializa-

tion step computes the initial set of closest features at time t = 0 (of the current segment), using

existing algorithms. In case the movement is composed of a sequence of segments, the initial set

of closest features of the next segment will be the same as the set of closest features at the end of

the last segment. The initialization step is thus only required for the very first segment. Between

two segments, the validity of the closest features can be tested in constant time using the V-Clip

algorithm. In case of invalid features, the result of the V-Clip algorithm will be used as input to

the next segment. This avoids propagating errors when working with long trajectories.

Lastly, when computing the distance between two segments having different start and end times-

tamps, the algorithm can only be applied on the period during which these segments overlap. Let’s

imagine that the movement of a first object is defined between t1 and t2, and the movement of a

second object is defined between t3 and t4, with t1 < t3 < t2 < t4. The algorithm can thus only

be applied on the period [t3, t2]. In the rest of this article, we always assume that this period is

normalized to [0, 1] for simplicity. All equations thus implicitly assume t ∈ [0, 1].
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4 EVOLUTION OF CLOSEST FEATURES

The problem of computing the distance between two static geometries can be reduced to finding

the two closest features of these geometries. Features of a geometry are its vertices and edges.

For a point geometry, the only existing feature is the point itself. Given the closest features of

two geometries, their distance can then be computed in constant time. Indeed, both the distance

between two points and the distance between a point and an edge can be computed in constant

time.

The same conclusion can be made when computing the temporal distance between two moving

objects. If the closest features are known at any time t ∈ [0, 1], returning the distance between

these objects given their closest features can be done in constant time. Knowing this, the remaining

problem consists of computing the evolution of the closest features of the two moving objects from

t = 0 to t = 1. In this section we present an algorithm that, given a pair of moving objects (points

or polygons), returns a list representing the evolution of closest features during the movement of

the objects.

The rest of this section is structured as follows. Section 4.1 first details how we can compute the

distance between a moving point and a moving edge in constant time. This section also presents a

fundamental equation (Equation (8)) used to detect changes in closest features. Then, Section 4.2

presents the algorithm to find the evolution of closest features between a moving point and a

convex moving polygon. Section 4.3 then describes an equivalent algorithm applied on two convex

moving polygons. Finally, Section 4.4 describes how the presented algorithms can also be used for

non-convex polygons.

4.1 Point-to-edge Distance

This section describes the equations needed to compute the distance between a moving point

p (t ) = (xp (t ),yp (t )) and a moving edge e (t ). These equations are crucial for the algorithms de-

scribed in Sections 4.2 and 4.3. For simplicity, we omit the subscript of the edge and denote its

start and end vertices as vs (t ) and ve (t ), respectively. A point on the moving edge is thus defined

using Equation (6). As mentioned, this follows from the static parametric definition of a point along

an edge, as used in [19]:

e (s, t ) = vs (t ) ∗ (1 − s ) +ve (t ) ∗ s, s ∈ [0, 1]. (6)

The equations of the moving point p (t ) are not specified here, as they can in practice be any

parametric function of time. In the context of this article, however, we can assume that they cor-

respond to either Equation (3) or Equation (5).

As described in Section 3, the distance between a point and an edge can be computed by mini-

mizing the distance between this moving point and any point on the moving edge (Equation (7)).

Again, d (e (t ),p (t )) is an abuse of notation and denotes the minimum Euclidean distance between

the edge e (t ) and p (t ):

d (e (t ),p (t )) =mins ∈[0,1]{d (e (s, t ),p (t ))}. (7)

By differentiating d (e (s, t ),p (t )) with respect to s and equating to 0, we can find the values of s
where this minimum is obtained. This results in a function s (t ), given in Equation (8):

s (t ) =
(p (t ) −vs (t )) • (ve (t ) −vs (t ))

L2
, (8)

where x • y represent the standard dot operator, and L2 = (xe − xs )2 + (ye − ys )2 is the squared

length of the edge.
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Fig. 2. Visualization of the value of s (t ) depending on the position of the point with respect to the edge.

Since we require s ∈ [0, 1] for the point e (s, t ) to be on the edge, we can distinguish three cases:

• s (t ) <= 0: Point p is closest to the start vertex vs .

• s (t ) >= 1: Point p is closest to the end vertex ve .

• 0 < s (t ) < 1: Point p is closest to e (s (t ), t ).

Using this equation, we can thus determine the point on the moving edge closest to the moving

point. Equation (8) has two main uses. First, it can tell us when the closest point on the edge

is one of the end vertices or a point inside the edge. This will be used to determine changes in

closest features in the following sections. Second, knowing s (t ), we can compute the distance

between a moving point p (t ) and a moving edge e (t ) at any given time t ∈ [0, 1] in O (1) time

using Equation (9):

d (e (t ),p (t )) = d (e (max (min(s (t ), 1), 0), t ),p (t )). (9)

Figure 2 displays the lines where s (t ) = 0 (in red) and s (t ) = 1 (in blue) for a moving edge.

The position of the moving point with respect to these lines will thus determine where the closest

point on the edge lies. It is important to understand that these lines are not actually parameterized

by t . Indeed, if the equation s (t ) = 0 (s (t ) = 1) is true for a given t∗, this simply means that the

moving point is on the red (blue) line at t = t∗. The actual equations of the two lines are not given

here as they are of no practical importance.

4.2 Point-to-polygon Distance

In this section, we present an algorithm to compute the evolution of closet features between a

moving point and a convex moving polygon in O (loд(n) + k ) time, where n is the number of

vertices of the polygon and k is the size of the result. This algorithm returns a new data object

of size k that allows successive computations of the distance to be done in O (loд(k )) time. The

relation between k and n is discussed at the end of the section.

The general idea of the algorithm is to track the closest feature of the moving polygon to the

moving point. The features of a polygon are its vertices and edges, and the closest feature of a

polygon to a point is thus the vertex or the edge closest to this point. The outer Voronoi diagram

of a convex polygon can be used to determine the closest feature given the position of the point.

An example of an outer Voronoi diagram is shown in Figure 3. In this figure, the Voronoi regions

outside of the polygon are bounded by a red and a blue line, as well as an edge in half of the

cases. The red and blue lines are identical to the ones in Figure 2 but applied to the different

edges of the polygon. This representation assumes that the vertices of the polygon are listed in

counter-clockwise order, as mentioned in Section 3. This assumption will hold in all future figures

as well.

The return value of the algorithm is a mapping from time to feature as a list of tuples. Each tuple

contains a timestamp t ∈ [0, 1] and a feature F , which can be either a vertex (F = vj ) or an edge

(F = ej ) of the polygon. This list is sorted by increasing timestamp t . Note that this sorting does
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Fig. 3. Outer Voronoi diagram of a convex polygon.

not have to be done in practice, as the list is already being computed in sorted order:

L = [(t0 = 0,F0), . . . , (tk−1,Fk−1), (tk = 1,Fk−1)]. (10)

At every timestamp t , with t0 ≤ t < t1, the closest feature to the moving point is F0. At t = t1,

the closest feature becomes F1, and so on. In practice, the last tuple in L of Equation (10) will be

omitted since it is only there to describe the fact that the last feature Fk−1 is valid from t = tk−1 to

t = 1.

With this data, the distance between the moving point and the moving polygon can be computed

in O (loд(k )) time. Indeed, given any timestamp t ∈ [0, 1], we can use binary search on the list to

find the closest feature at that instant in O (loд(k )) time. With the closest feature and the moving

point, we can then compute the distance in constant time. If the closest feature is a point, the

Euclidean distance is used. If it is an edge, the distance is computed using Equation (9). Note that

in this case, we are certain that 0 < s (t ) < 1, and the min and max functions of Equation (9) can

thus be omitted.

Next, we describe the algorithm to compute the list L starting from a convex moving polygon

and a moving point.

4.2.1 Algorithm. The algorithm consists of two parts. First, the initial closest feature F0 is com-

puted. This is a static problem and can be solved using known algorithms in O (loд(n)) time [30].

Second, given (ti ,Fi ), the algorithm finds the next pair (ti+1,Fi+1) as described below. Starting

from (t0 = 0,F0), the second part is then called repeatedly using the output of the previous call as

input to the next, and this continues until no new closest feature is found at a time ti < t < 1. The

remaining problem consists thus of computing (ti+1,Fi+1) given (ti ,Fi ) and both moving objects

(p (t ) and R (t )).
The input feature is either a vertex (Fi = vj ) or an edge of the polygon (Fi = ej ). Figure 4

displays both cases.

The four possible transitions ((a) to (d)) of closest features are shown in Figure 5. If the input

closest feature is a vertex of the polygon Fi = vj (Figure 5, left), then the next closest feature will

be either one of the two edges adjacent to the vertex: Fi+1 = ej or ej−1. This corresponds to cases

(a) and (b) of Figure 5, respectively. The boundary lines are defined as in Section 4.1, and determin-

ing when either case (a) or (b) happens can be done by solving Equation (11) with respect to t . In

these equations, sj (t ) corresponds to Equation (8) applied to the edge ej (t ) and the point p (t ):

(a) : sj (t ) = 0 (b) : sj−1 (t ) = 1. (11)

If at least one of these equations has a solution in [ti , 1], then there will be a change in closest

feature. Let’s denote the respective solutions ta (Equation (11), (a)) and tb (Equation (11), (b)). The
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Fig. 4. Examples where the moving point is closest to a vertex (left) or an edge (right) of the moving polygon.

Fig. 5. Two possible transitions per type of initial closest feature.

algorithm will add (ta , ej ) to the list L if ta < tb , and (tb , ej−1) otherwise. If neither equation has

a solution in [ti , 1], this means that the closest feature will not change again before the end of the

movement, and the algorithm will thus terminate and return the current list L.

Similarly, if the initial closest feature is an edge of the polygon Fi = ej (Figure 5, right), then the

next closest feature will be either the end or the start vertex of this edge Fi+1 = vj+1 or vj . This

corresponds to cases (c) and (d) of Figure 5, respectively. In these cases, the equations to solve are

listed in Equation (12):

(c ) : sj (t ) = 1 (d ) : sj (t ) = 0. (12)

As in the previous case, we denote the solutions tc and td , respectively. The algorithm appends

(tc ,vj+1) to the list L if tc < td , and (td ,vj ) otherwise. If neither equation has a solution in [ti , 1],

the algorithm terminates and returns L.

From the definition of s (t ), these equations are non-linear if the rotation of the polygon is

nonzero. To solve these equations, numerical methods have to be utilized to find numerical approx-

imations of the solutions. Possible methods include the Newton-Raphson method [1] or bracketing

methods such as the false position method or the ITP method [21]. The implementation used in

Section 7 uses the false position method to solve these non-linear equations. In case the movement

of the polygon contains no rotation, these equations become linear. Section 5 describes direct so-

lutions to the equations under the assumption that the polygons move without rotation.

The examples and equations described in this section do not take into account special cases. For

the point-to-polygon distance, there are three special cases that have to be taken into account:

(1) The moving point is on a boundary line of the Voronoi diagram at t0.

(2) The moving point enters the polygon through the edge ej in the right image of Figure 5.

(3) The moving point enters the polygon through the vertex vj in the left image of Figure 5.

All three of these cases can be detected and handled accordingly. In Case 1, the algorithm will

have to decide if F0 corresponds to the left or right case of Figure 4. This can be done by looking
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at a timestamp t∗0 = t0 + ϵ , right after t0 = 0. Both Cases 2 and 3 correspond to an intersection

between the moving polygon and the moving point. This is not allowed in the algorithm, and if

one of these two cases is detected, the algorithm will fail. This behavior also exists in the polygon-

to-polygon algorithm and can thus be used to detect if two moving objects intersect or not. Case

2 can be detected using Equation (13), and Case 3 will happen if the solutions of both (a) and

(b) in Equation (11) are true for the same value of t (the moving point crosses the two boundary

lines of the Voronoi region at the same time):

(p (t ) −vj (t )) × (vj+1 (t ) −vj (t )) = 0, (13)

where v1 ×v2 represents the cross-product between two vectors.

Algorithm 1 summarizes the process of computing the list of closest features between a moving

point and a convex moving polygon (without the special cases). The complexity of computing

the first closest feature is O (loд(n)) [30]. Assuming that solving the equations using numerical

methods takes constant time, the complete algorithm will finish inO (loд(n)+k ) time, wherek is the

length of the list returned by the algorithm. This follows from the fact that the loop only solves two

equations per iteration. The cost of running this loop will thus be the number of iterations times

the cost of an iteration. As mentioned, we assume that one iteration (solving one or two equations)

takes constant time. Each iteration adds a single change of closest feature to the list, and we exit

the loop when no new change is found. The number of iterations is O (k ), the result size. This

gives us a total complexity of O (loд(n)+k ). The assumption that solving the non-linear equations

takes constant time is a simplification made to keep the notation of the complexity the same for

both the rotating and the non-rotating case. As can be seen in Section 7.1, this simplification is

coherent with the actual runtime of the algorithm. We observe that the non-linear solution is

about 5 to 8 times slower than the direct solution, which does not influence the global complexity

of the algorithm. The value of k corresponds to the number of times the closest features switched

during the movement and is thus very dependent on the translation and rotation parameter of

the moving objects. With the assumptions that θ ∈ [−π ,π ] for the moving polygon and that the

moving point either translates linearly or has the equations of a vertex of another moving polygon,

the complexity of k will in the worst case be linear in n. In practice, it is clear that if the polygon

rotates at most 180 degrees, there cannot be more than n changes in closest features. The worst-

case complexity of this algorithm is thus O (n), and the best-case complexity is O (loд(n)) (if k = 1).

4.3 Polygon-to-polygon Distance

This section describes an algorithm to compute the distance between two moving polygons RA (t )
and RB (t ), each having their own translation and rotation parameters (dxA,dyA,θA,xA

c ,y
A
c ) and

(dxB ,dyB ,θB ,xB
c ,y

B
c ). The algorithm is similar to the one described in Section 4.2 in the sense that

it also tracks the closest feature between the moving objects. In the case of the distance between

two polygons, however, we track two closest features instead of one.

The algorithm processes two moving polygons having n and m vertices, respectively, in

O (loд(n) + loд(m) + k ) time and returns a data object that allows successive computations to be

done in O (loд(k )) time. As for the point-to-polygon distance algorithm, the value of k corresponds

to the size of the result set and depends heavily on n, m and the movement of both polygons. In

particular, k = O (n +m) in the worst case, assuming that the rotation parameter of both polygons

is a constant (e.g., θA ∈ [−π ,π ] and θB ∈ [−π ,π ]).

The object returned by the algorithm is a listL of tuples, where each tuple contains a timestamp

t and the closest features F A and F B of the two polygons at that instant:

L = [(t0 = 0,F A
0 ,F B

0 ), . . . , (tk−1,F A
k−1,F

B
k−1)]. (14)
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Fig. 6. Initial closest features between two moving polygons: vertex-vertex (left) or edge-vertex (right).

ALGORITHM 1: Point-to-polygon Distance Algorithm

Input: R (t ),p (t )
Output: L, the list of closest features with timestamps.

begin

F0 ← Compute closest feature at t0 = 0 [30];

L ← [(0,F 0)];

while True do

(ti ,Fi ) ← Last element of L;

if Fi = vj then

ta , tb ← Solve Equation (11);

if ti < ta <= 1 and ta < tb then

Append (ta , ej ) to L;

else if ti < tb <= 1 then

Append (tb , ej−1) to L;

else break ;

else

tc , td ← Solve Equation (12);

if ti < tc <= 1 and tc < td then

Append (tc ,vj+1) to L;

else if ti < td <= 1 then

Append (td ,vj ) to L;

else break ;

return L;

The first step of the algorithm consists of computing the closest features F A
0 and F B

0 at t0 = 0.

This is a well-known static problem and can be solved in O (loд(n) + loд(m)) time [30]. The rest of

the tuples in the list are then computed by iteratively determining when the next change in closest

features happens and what the new closest features are. This process is similar to the one described

in Algorithm 1. In this case, however, the closest feature transitions are more complex than in the

point-to-polygon case. Each change in closest feature will still be detected in constant time, and the

algorithm will exit when no new change in closest features is detected. The loop in the algorithm

has thus a complexity of O (k ), which results in an algorithm of complexity O (loд(n)+ loд(m)+k ).
The initial state of the closest features pair can be either vertex-vertex, vertex-edge, edge-vertex,

or edge-edge, where the first and second terms denote the types of closest feature on polygons RA

and RB , respectively. The vertex-edge and edge-vertex cases can be handled similarly by simply

swapping the two polygons in the equations, and the edge-edge case is a special case that will be

discussed later. Figure 6 thus displays the two main cases for the types of initial closest features:
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Fig. 7. Two examples of parallel edges as closest features between two polygons. (Right) is a special case of
(left).

Fig. 8. Evolution of the closest features: vertex-vertex to edge-vertex (left) or edge-vertex to vertex-vertex
(right).

vertex-vertex (left) and edge-vertex (right). Figure 7 shows two examples of the special case where

the two closest features are parallel edges of the polygons.

In this section, the indices j ∈ {1, . . . ,n} and j ′ ∈ {1, . . . ,m} will be used for the vertices and

edges of polygons RA and RB , respectively. The index i ∈ {0, . . . ,k−1} will still be used to denote

the different tuples of L.

Starting from one of the two states in Figure 6, three transitions in closest features are possible:

• Vertex-vertex to edge-vertex

• Edge-vertex to vertex-vertex

• Edge-vertex to another edge-vertex

These transitions and their corresponding equations are explained in the following subsections.

Since all of the transitions keep the closest feature pairs in either the vertex-vertex or edge-vertex

state, the final list L will only contain vertex-vertex or edge-vertex pairs. This is important for

future sections, and this constraint can be met even when handling special cases, e.g., when two

edges are parallel and closest.

4.3.1 Vertex-vertex ↔ Edge-vertex. Figure 8 shows the possible transitions that will cause the

closest features to go from the vertex-vertex case to the edge-vertex case or back. For clarity, we

change the notation of Equation (8) once again and write function s (t ) as s (v, e ) (t ), to specify

which moving vertex/point and moving edge are being used. The cases (a) to (f) in Figure 8 can

thus be detected by solving Equations (15) to (17):

(a) : s (vB
j′ , e

A
j ) (t ) = 0 (b) : s (vB

j′ , e
A
j−1) (t ) = 1, (15)

(c ) : s (vA
j , e

B
j′ ) (t ) = 0 (d ) : s (vA

j , e
B
j′−1) (t ) = 1, (16)

(e ) : s (vB
j′ , e

A
j ) (t ) = 1 ( f ) : s (vB

j′ , e
A
j ) (t ) = 0. (17)
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If (F A
i ,F B

i ) = (vA
j ,v

B
j′ ), Equations (15) and (16) have to be solved to determine what the next

pair of closest features will be. The edge-vertex pair used in the function s (v, e ) (t ) corresponds to

the next pair of closest features in that particular case. The equation in Equations (15) and (16) that

has the earliest solution t ∈ [ti , 1] will thus determine uniquely the next pair of closest features.

For example, if the equation corresponding to case (a) has the earliest solution ta ∈ [ti , 1], then

the next pair of closest features is (F A
i+1,F B

i+1) = (eA
j ,v

B
j′ ).

In the edge-vertex case, the process is similar. Equation (17) has to be solved for cases (e) and

(f) to determine what the next pair of features will be. If the equation for case (e) has the earliest

solution between ti and 1, the next pair of features is (F A
i+1,F B

i+1) = (vA
j+1,v

B
j′ ). Otherwise, the next

pair of features is (F A
i+1,F B

i+1) = (vA
j ,v

B
j′ ).

Special cases similar to the ones discussed in Section 4.2 can also happen here. Since they are

solved in the same way as explained in Section 4.2, they are not discussed further.

4.3.2 Edge-vertex↔ Edge-vertex. Another possibility when starting from the edge-vertex case

is that the edge eA
j becomes parallel to one of the edges adjacent to the vertex vB

j′ . If this happens,

the edges will be parallel during a single timestamp t , and the next closest features will be a new

edge-vertex pair. Figure 9 shows an example of this, where the edge eA
i becomes parallel to the

edge eB
j′ during a single timestamp, and the closest features thus evolve from (eA

j ,v
B
j′ ) to (vA

j , e
B
j′ )

at that timestamp. This is only one of the four possible transitions starting from (eA
j ,v

B
j′ ). The four

possible transitions are listed below:

(i) (eA
j ,v

B
j′ ) → (vA

j , e
B
j′ )

(ii) (eA
j ,v

B
j′ ) → (vA

j+1, e
B
j′−1)

(iii) (eA
j ,v

B
j′ ) → (eA

j ,v
B
j′+1)

(iv) (eA
j ,v

B
j′ ) → (eA

j ,v
B
j′−1)

To determine when edge eA
j becomes parallel to either eB

j′ or eB
j′−1, Equations (18) and (19) have

to be solved:

(vA
j+1 (t ) −vA

j (t )) × (vB
j′+1 (t ) −vB

j′ (t )) = 0, (18)

(vA
j+1 (t ) −vA

j (t )) × (vB
j′ (t ) −v

B
j′−1 (t )) = 0. (19)

If Equation (18) is true for some t , then eA
j is parallel to eB

j′ at that timestamp, and either case

(i) or (iii) of the transitions listed above will happen. These two cases can be distinguished by

determining which of the two vertices vA
i or vB

j′+1 is closest to the other edge at t . In the example

given in Figure 9, vA
i is closer to eB

j′ than vB
j′+1 is to eA

i , and this corresponds to transition (i) in

the list. With two possible transitions per adjacent edge of RB , we thus get to the four possible

transitions listed above.

Just like in Section 4.2, the equations listed in this section are nonlinear in the general case and

have to be solved using numerical methods. For all equations, only the first solution between ti
and 1 is required, with 0 ≤ ti < 1. If the movement of the polygons does not involve a rotation,

these equations become linear and Section 5 describes how they can be solved directly without

using numerical methods.

4.3.3 Special Cases. Next to the two start states shown in Figure 6 and the transitions detailed

in Sections 4.3.1 and 4.3.2, a multitude of special cases exist. Similarly to the ones in Section 4.2,

they can be detected and handled in constant time. Below is a non-exhaustive list of these special

cases:
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Fig. 9. Evolution from an edge-vertex pair (g.1) to another edge-vertex pair (g.3) by transitioning through an
edge-edge pair (g.2).

• Two edges of the polygons are parallel and closest at t0 = 0, as shown in Figure 7.

• The two polygons have the same rotation speed, and two edges are parallel during the com-

plete movement instead of at a single timestamp.

• The polygons do not rotate. See Section 5.

• An edge-vertex pair evolves to a vertex-vertex pair by transitioning though an edge-edge

pair. This is a special case of Section 4.3.2.

The first special case essentially corresponds to starting from state (g.2) in Figure 9. In this case,

the problem consists of determining the next pair of closest features without knowing what the

previous pair was. Notice that we are looking for state (g.3) without knowing state (g.1). This can

be solved by looking at the closest features at a timestamp t∗0 = t0 + ϵ , right after t0 = 0, similarly

to what was done for a special case of Section 4.2.

The rest of the special cases are not detailed here but can also be solved in constant time using

methods similar to the ones presented here and in Section 4.2. Note that these cases will for the

most part never happen when running the algorithm on random or real-world data. For exam-

ple, even when handling fast-rotating polygons with up to 500 vertices as in the experiments of

Section 7.1, more than 99% of the runs did not encounter a single one of these special cases.

4.4 Non-convex Polygons

The algorithms presented in Sections 4.2 and 4.3 assume that the moving polygons are convex,

which allows solutions in linear time in terms of number of vertices. In this section, we present

an algorithm for non-convex polygons that makes use of the previously presented algorithms for

convex polygons. The algorithm for non-convex polygons consists of three steps. First, the poly-

gons are decomposed into convex parts (see Section 4.4.1). Second, partial solutions are computed

on the convex parts (see Section 4.4.2). Last, the partial solutions are merged into a final solution

(see Section 4.4.3).

4.4.1 Convex Decomposition. The first step of the algorithm consists of decomposing the non-

convex polygons into convex parts. This has to be done for both polygons in the case of the
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Fig. 10. Non-convex object (a), with an optimal decomposition in three convex parts (b).

Fig. 11. (a) Overlapping or (b) superfluous parts in the convex decomposition.

polygon-to-polygon distance operation. Even if the polygons are moving, the decomposition only

has to be done on the static polygon at t = 0. The movement of the convex parts will then be deter-

mined using the same parameters as the movement of the initial polygon. Specifically, if the initial

polygon has a nonzero rotation, all convex parts will also have a nonzero rotation. The rotation

parameters of each convex part are then defined using the same rotation center and rotation angle

as the initial polygon.

Convex polygon decomposition is a well-known problem in computation geometry. Chazelle [2]

and Keil [15] present two optimal solution in, respectively, O (n+r 3) and O (r 2nloд(n)) time, where

r corresponds to the number of reflex vertices (with an inside angle > 180°) and n is the total num-

ber of vertices. A more practical algorithm is the Hertel-Mehlhorn algorithm [13], which returns

a convex decomposition in O (n + rloд(r )) time, with at most 4 times the optimal number of con-

vex parts. We will write the number of convex parts of a polygon using the uppercase letter of its

number of vertices. For example, a polygon with n vertices will have N convex parts when decom-

posed using Hertel-Mehlhorn. Figure 10 shows an example of a non-convex polygon, as well as its

optimal decomposition in convex parts. In the example shown, we have N = 3.

Note that the decomposition required to compute the temporal distance is less restrictive than

a traditional convex decomposition problem. For example, Figure 11(a), shows an example of a

decomposition in only two overlapping convex parts. This is less than the optimal convex decom-

position without overlap, which is beneficial for the next step. Another case is when a convex part

does not contain any edges of the initial non-convex polygon. In this case, that specific convex

part can be omitted, as there will always be at least one other part with a smaller distance to the

second object. An example of such a case is shown in Figure 11(b), where the center square can

be omitted. In this specific case, the omitted part is convex as well, but this is not a requirement
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Fig. 12. Evolution of closest features for a non-convex polygon.

since it does not participate in the distance computation. Determining a good (or optimal) convex

polygon partitioning, taking into account overlapping and superfluous parts, is left as future work.

4.4.2 Computing Partial Solutions. With the moving polygons being decomposed in convex

parts, the next step consists of computing partial solutions using the previously explained algo-

rithms for convex polygons. For the point-to-polygon distance, this has to be done once per con-

vex part. For the polygon-to-polygon distance, every part from one polygon has to be combined

with every part of the other polygon. With the two polygons having N and M convex parts, re-

spectively, the algorithms for convex polygons will thus be called N and N ∗ M times for the

point-to-polygon and polygon-to-polygon problems, respectively. As discussed in the previous

subsection, only convex parts that share an edge with the initial non-convex polygon need to be

part of this computation.

Section 2 mentions techniques for non-convex polygons making use of bounding hierarchies to

reduce the total number of computations necessary. Similar techniques could be used in this step

to improve the running time of the algorithm, but this is left as future work.

4.4.3 Merging Partial Solutions. The last step of the non-convex algorithm consists of merging

the partial solutions into a final output. Let’s denote the number of partial solutions as L. L will be

equal to either N or N ∗ M , depending on which problem is being solved. Every partial solution

consists of a list of kl (l ∈ {0, . . . ,L − 1}) pairs of closest features with their corresponding times-

tamps. We will also assume that in the point-to-polygon distance problem, the second feature in

the closest feature pair always contains the moving point. The two problems can thus be solved

using the same algorithm. The remaining problem consists of finding for every timestamp between

0 and 1 which solution contains the actual closest features of the non-convex problem. Figure 12

shows an example of when a closest feature changes from one convex part to another. The green

line is a type of boundary in the Voronoi diagram of the non-convex polygon that does not exist

in the convex case (see Figure 3).

The problem is solved in multiple steps. First, for every partial solution, the distance is computed

at every timestamp in the list of closest features, as well as at t = 1. In total, these are K =∑L−1
l=0 kl + 1 distance computations. We now have L lists of tuples, where each tuple contains a

timestamp, a pair of closest features, and a distance value. The timestamp and distance values

can thus be seen as piecewise-linear functions, where every linear piece has an associated pair of

closest features. In this representation, the distance between two computed instants is assumed to

be linearly interpolated between the previous and the next instant. Figure 13 shows an example

with two partial solutions.

In the second step, we track the minimum of these piecewise-linear solutions using a sweep-

line algorithm such as the Bentley–Ottmann algorithm [5]. The sweep line will have to maintain a

binary search tree with L elements (the L solutions) throughout the complete algorithm. An event
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Fig. 13. Piece-wise linear functions of two partial solutions. The dotted red line corresponds to the actual
timestamp t∗4 (computed using Equation (22)) at which the solutions switch.

will be either a change in segments from a single solution or a crossing between two solutions.

The main purpose of this step is to determine when the actual closest features switch from one

convex part to another. This corresponds in the sweep-line algorithm to a crossing between the

two lowest elements in the binary search tree. These crossings can be detected using the linear

approximation of the distance, but the actual timestamps at which these solutions swap still have

to be computed. In Figure 13, for example, one swap in convex parts takes place at the red vertical

line. To determine when the actual swap takes place (the red dotted line), however, the real distance

functions (the black dotted lines) have to be used instead of the linear approximation.

Since every linear segment of the linear approximation is associated with a pair of closest fea-

tures, this can be done by finding the timestamps where the distance between the pair associated

to the first segment is equal to the distance between the pair associated to the second segment.

Depending on the type of closest features, the distance functions will be different. If the clos-

est features are two moving vertices vA (t ) = (xA (t ),yA (t )) and vB (t ) = (xB (t ),yB (t )), then the

(squared) distance function corresponds to Equation (20). The distance between a moving vertex

vA (t ) = (xA (t ),yA (t )) and a moving edge eB (t ) is equal to the distance between the vertex and the

closest point on the edge. From Section 4.1, we know that the closest point on the edge is given

by eB (s (t ), t ) = (xB (s (t ), t ),yB (s (t ), t )), where eB (s, t ) is an arbitrary point on the edge, and s (t )
is given by Equation (8). The (squared) distance is thus given by Equation (21):

d2
AB (t ) = (xB (t ) − xA (t ))2 + (yB (t ) − yA (t ))2, (20)

d2
AB (t ) = (xB (s (t ), t ) − xA (t ))2 + (yB (s (t ), t ) − yA (t ))2. (21)

To determine when the closest features change from (F A,F B ) to (F C ,F D ), we thus have to

solve Equation (22) between ti and ti+1, where the actual distance function of both pairs of features

is either Equation (20) or (21):

d2
AB (t ) − d2

CD (t ) = 0. (22)

The final step of the merging part consists of creating the final list of closest features. This

process is straightforward, since after solving Equation (22) for the different switches between

minimum solutions, the minimum/closest solution is known for every instant between 0 and 1. In

the example in Figure 13, S1 is closest when t ∈ [0, t∗4 ] and S2 is closest when t ∈ [t∗4 , 1].

To summarize the more complex case of polygon-to-polygon distance, the first step consists

of decomposing both polygons into convex parts. This will create N and M convex parts, respec-

tively. The second step calls the algorithm for convex polygons using every combination of convex

parts of the two initial polygons. This results in N ∗ M partial solutions. Finally, these solutions

are merged together. A sweep-line algorithm is used to compute the intersections between the

solutions, and the exact timestamps of the intersections between the two minimum solutions are
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computed using Equation (22). The final solution is then created by combining the partial solutions

at the times where they are the actual closest solution in the non-convex problem.

5 NON-ROTATING POLYGON OPTIMIZATION

Section 3 assumes that the movement of the polygons is a combination of a translation and a rota-

tion. The rotation is the cause of the non-linearity of the equations in Section 4. If the movement

of the polygons only contains a translation, then the movement of its vertices is linear, and most

of the equations presented in this article become linear or polynomial. If this is the case, then the

equations present direct solutions and can thus be solved without numerical methods. Without

directly impacting the complexity of the algorithms, this can still significantly improve their per-

formance. Real-world examples where this could be of use include logistics robots, objects moving

on fixed tracks, cars on a highway, and more. Whenever an object has a rotation θ < ϵ between

two timestamps, these direct solutions can be used to speed up the algorithms.

With the movement of the polygons being defined using only translation parameters, the equa-

tions of the moving vertices defined in Equation (5) can be simplified to Equation (23):

xi (t ) =xi + t ∗ dx
yi (t ) =yi + t ∗ dy.

(23)

With the equations of the vertices being linear, Equation (6) can be rewritten as Equation (24):

e (s, t ) = vs (t ) ∗ (1 − s ) +ve (t ) ∗ s, s ∈ [0, 1]

= vs ∗ (1 − s ) +ve ∗ s + t ∗ (dx ,dy).
(24)

Two important equations that need solving are s (t ) = 0 and s (t ) = 1, with s (t ) as defined in

Equation (8). As a reminder, p (t ) = (xp (t ),yp (t )) is the moving point, and vs (t ) and ve (t ) are the

start and end points of the moving segment, respectively. We will call (dxp ,dyp ) the translation

of the moving point and (dx ,dy) the translation of the edge. Examples where these equations

are required for different combinations of moving point and moving edge are Equations (11), (12),

(15), (16), and (17). The direct solutions for these equations are shown in Equations (25) and (26).

These equations only have solutions if the movement of the point is not perpendicular to the edge

((dxp − dx ) ∗ (xe − xs ) + (dyp − dy) ∗ (ye − ys ) � 0):

s (t ) = 0⇔

t =
(xs − xp ) ∗ (xe − xs ) + (ys − yp ) ∗ (ye − yi )

(dxp − dx ) ∗ (xe − xs ) + (dyp − dy) ∗ (ye − ys )
, (25)

s (t ) = 1⇔

t =
(xe − xp ) ∗ (xe − xs ) + (ye − yp ) ∗ (ye − ys )

(dxp − dx ) ∗ (xe − xs ) + (dyp − dy) ∗ (ye − ys )
. (26)

When working with rotating polygons, it is possible that two edges become parallel, and that

the closest features change at that moment (Section 4.3.2). In this case, since the polygons do not

rotate, two edges of different polygons are either always or never parallel. Equations (18) and (19)

thus do not need to be solved for t anymore.

Using Equations (25) and (26), the algorithms of Sections 4.2 and 4.3 can thus be run without

using numerical methods. The experimental evaluation on real data in Section 7.2, shows that

more than half the movement segments are non-rotating, and thus the impact of this performance

optimization is significant.
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6 IMPLEMENTATION IN A MOVING OBJECTS DATABASE

In Section 4 we presented a general solution to the problem of computing the temporal distance

between two moving points or polygons. The described algorithms return a list ofk closest features

with their associated timestamps. This list of closest features, together with the corresponding

moving objects, completely defines the equation of the temporal distance between these moving

objects. Indeed, the temporal distance is a piece-wise defined function, where every piece is defined

using either Equation (20) or Equation (21). To compute the distance value at a given timestamp t ,
we can thus determine the closest features at that timestamp in O (loд(k )) time using binary search

on the list of features. Given the closest features at t , we then use the corresponding equation

(Equation (20) or (21)) to determine the distance value in O (1) time.

When using these algorithms to implement a distance operator in a moving objects database, the

returned distance function still needs to be transformed into the data model used in the database.

In this section, we describe how the algorithm of Section 4 has been used to implement various

distance operators in MobilityDB [31], an open-source moving objects database.

6.1 Linear Approximation of the Distance

MobilityDB defines a temporal float type (tfloat), which is used to store the temporal evolution

of a real-valued parameter as a piecewise linear function. This temporal type is used, for example,

to store temperature measurements, the speed of a moving object, and so forth. It is also the re-

turn type of the distance operators that involve temporal objects, e.g., the operator computing the

distance between two moving points.

Since the temporal distance between two moving objects is not piecewise linear, we need to

compute and store its linear approximation. This linear approximation will accurately store the

correct start and end distance values of every movement segment, as well as the extreme points

of the function, i.e., all minima and maxima. An example of such a linear approximation of a non-

linear function is shown in Figure 14 as the red line. This choice of linear approximation is the

same as the one already done in MobilityDB when computing the distance between two moving

points [31]. Since this approximation maintains the extreme points of the distance function, it can

be used to compute the exact nearest approach distance between two moving bodies. This is also

explained in Section 6.2.

The previously presented distance algorithm returns a list L representing the evolution of clos-

est features between two moving objects. In case the distance is computed between a moving point

and a moving polygon, we can assume that the second feature always corresponds to the moving

point itself:

L = [(t0 = 0,F A
0 ,F B

0 ), . . . , (tk−1,F A
k−1,F

B
k−1), (tk = 1,F A

k−1,F
B

k−1)]. (27)

As explained in Section 4.3, the closest feature pairs stored in the list can either be two mov-

ing vertices or a moving vertex and a moving edge. Between every pair of timestamps [ti , ti+1],

the closest features remain the same. In case these closest features are two moving vertices, the

(squared) distance function is described by Equation (20). If the two features are a moving vertex

and a moving edge, the function corresponds to Equation (21).

The linear approximation of the distance function is computed in three steps. First, for every

period [ti , ti+1], i ∈ {0, . . . ,k − 1}, the time coordinate of the extreme points is computed for

the corresponding distance function. This is done by computing the derivative of the (squared)

distance functions and finding the roots of this new function between ti and ti+1. Again, this has

to be solved using numerical methods if the rotation is nonzero. In this case, however, we are

looking for all the roots, instead of only the first. If there is no rotation, the distance functions
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Fig. 14. Approximation of a nonlinear continuous function (in blue) using a piecewise-linear function
(in red).

Fig. 15. List of implemented distance operators.

will be quadratic, and there will thus be a single extreme point. The developments for this direct

solution are omitted here.

In a second step, the distance is computed at every t ∈ {t0, . . . , tk }, as well as at every timestamp

returned by the first step. These values are stored in a list of time-value pairs, sorted by increasing

timestamp. Finally, the intermediate timestamps t ∈ {t1, tk−1} that do not correspond to an extreme

point are removed from the list. The extreme point condition can be checked by looking at the

values of the previous, current, and next timestamp. The current point will then be extreme if its

value is either smaller or larger than both other values. This last check is required in case the

switch from one closest feature to another does not happen at an extreme point.

This algorithm results in a list of time-value pairs that stores a linear approximation of the dis-

tance between two moving bodies. This is also the MobilityDB representation of a tfloat value

that does not contain temporal gaps. The temporal distance operator in MobilityDB will thus com-

bine the algorithms described in Section 4 with the linear approximation algorithm to return a

tfloat representing the temporal distance between its two operands.

6.2 Distance Operators

The previous section describes how we implement the distance operator in Mobili-

tyDB. Additionally, we also define three additional operators: nearestApproachDistance,

nearestApproachInstant, and shortestLine, with the signature in Figure 15. All three of

these operators are defined in the OGC Moving Features Access standard [20]. The types

tgeompoint and tgeometry are the types representing moving points and moving polygons, re-

spectively, in MobilityDB. For brevity, let’s also use the notation A to denote the set of types

{tgeompoint, tgeometry, point, polygon}.

NearestApproachDistance is an operator that, given two moving objects, returns the smallest

distance ever obtained between them during their movement. This operator is important as it

is used for nearest neighbor searches. Its implementation first computes the distance function

using the distance operator and then finds the minimum value of the result using the MobilityDB

minValue function. Indeed, as described in Section 6.1, the linear approximation of the distance

maintains all the extreme points of the function. The nearestApproachDistance operator will thus

return the correct value despite the linear approximation step.
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The nearestApproachInstant operator is complementary to the nearestApproachDistance operator,

as it computes the timestamp at which the nearest approach distance is obtained. If this happens

more than once, the first timestamp is returned. Lastly, the shortestLine operator computes the

shortest linestring between the two moving objects at the nearest approach instant.

7 EXPERIMENTAL VALIDATION

In this section, we evaluate the performance of the distance operator as it is described in Sections 4

and 6. The section is divided into two parts. First, we validate the analytical complexity of the

algorithms described in Section 4. This is done on synthetic data, as this allows us to control the

size and the movement parameters of the polygons. In a second step, we compare the existing

MobilityDB distance function for moving points to the newly implemented distance operator for

moving polygons. Since moving points have a more simple data model and distance function, we

use them as a baseline to get insight into the performance of the proposed moving body distance

function in practice. This second experimental section uses real-world AIS data.

7.1 Validation of Computational Complexity

In this section, we evaluate the complexity of the algorithms of Sections 4.2 and 4.3, as well as the

speedup received by the optimized version when the polygons are non-rotating. The algorithms

are coded in Python 3.6 and the experiments are repeated for both the point-to-polygon and the

polygon-to-polygon problems. The code and explanations to replicate these results are available

on GitHub.1

In the point-to-polygon case, a random convex polygon with n vertices is generated, using the

algorithm in [29],2 in the box (xmin ,ymin ,xmax ,ymax ) = (0, 0,n,n), with a translation (dx ,dy) =
(0,n) and a rotation θ . The random point is then generated in the box (2n,n, 3n, 2n), with a trans-

lation (0,−n), and the first algorithm is applied to these two moving objects. For the polygon-to-

polygon problem, we apply the same generation technique but generate a second polygon with

m = n vertices in the box (2n,n, 3n, 2n), with a translation (0,−n) and the same rotation θ as the

other polygon. In both cases, the rotation center of the polygons corresponds to their centroid.

These starting and movement conditions allow us to vary the number of vertices n and the rota-

tion θ of the polygons while making sure that the moving objects do not intersect. We vary the

number of vertices n between 3 and 500 and the rotation θ between 0 and π .

Two elements of the algorithms can be analyzed: the size k of the result and the runtime t of the

algorithm. First, we analyze the size of the result with respect to the parameters θ andn (remember

thatm = n in the experiments). Figure 16 shows the graphs ofk as a function ofn (point-to-polygon

problem) or n +m (polygon-to-polygon problem), for varying values of θ . We can see that the size

of the result is linear in the number of vertices but that the actual value of k also heavily depends

on θ . The results are averaged over multiple runs with the same values for n and θ .

Second, we analyze the runtime t of the algorithms with respect to the result size k . This is

done by running the algorithms for random values of n and θ and storing the size of the result

and runtime of the algorithms as (k, t ) pairs in a list. The list is then sorted by k and displayed on

the graph. For this experiment, only the While loop of Algorithm 1 is timed. The computation of

the initial closest feature in O (loд(n)) is omitted, as it is done using existing algorithms. We thus

expect the time t to be linear in k as detailed in Sections 4.2 and 4.3.

The results of these experiments can be seen in Figure 17. The blue and orange lines correspond

to the point-to-polygon and the polygon-polygon cases, respectively, and Figures 17(a) and 17(b)

1https://github.com/mschoema/tgeometry_python
2https://cglab.ca/~sander/misc/ConvexGeneration/convex.html
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Fig. 16. Graphs of k in function of n (point-to-polygon, (a)) and n + m (polygon-to-polygon, (b)) for fixed
value of θ .

Fig. 17. Graphs of t (in ms) in function of k for the non-optimized (θ � 0) (a) and optimized (θ = 0) (b)
algorithms.

show the result for the non-optimized (θ � 0) and optimized (θ = 0) algorithms, respectively. As

expected, the durations of the different algorithms are all linear with respect to their result sizes

(t = O (k )). The average durations per result (t/k) for the non-optimized algorithm are t/k = 38μs

and 100μs for the point-to-polygon and polygon-to-polygon problems, respectively. The respective

average durations per result for the optimized algorithms are t/k = 7μs and 13μs, respectively. The

optimized algorithms are thus about 5 to 8 times faster than the non-optimized one for identical

result sizes.

7.2 Danish AIS Use-case

With Section 7.1 confirming the computational complexities of the algorithms presented in

Section 4, it remains to assess the running time of a distance query in a real-world use-case. For

this, we test the MobilityDB implementation of the distance operator3 on a real-world AIS dataset

from the Danish Maritime Authority.4 This dataset contains historic AIS data and is publicly dis-

tributed as CSV files each containing 1 full day of data. We use the CSV files from September 2020,

which contain in total 250M AIS points in 40K ship tracks spread over 30 days, for a total of 61.6GB

of raw data. The data is cleaned and loaded in MobilityDB in both moving point and moving poly-

gon format. The moving point data is constructed using the timestamp, longitude, and latitude

fields of the AIS data. To construct the moving polygons, we first construct the static geometry at

each timestamp using the latitude, longitude, and heading and the fields sizea, sizeb, sizec, and

3https://github.com/mschoema/MobilityDB/tree/tgeometry
4https://dma.dk/safety-at-sea/navigational-information/ais-data
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Fig. 18. Construction of the geometry of a vessel from its position, size, and heading information.

Fig. 19. (a) Entrance to the port of Helsingborg, with the query point in red and the vessel trajectories in
blue. (b) Visualization of the vessel with the closest approach in both the point (blue) and polygon (green)
representation.

sized, giving the distances of the sides of the vessel to the GPS point at which the longitude and

latitude are computed. The static geometry constructed from this data is a pentagon in the shape

of a rectangle with an additional triangle on one side representing the front of the vessel. The

construction of this polygon representation of a vessel can be seen in Figure 18. Since the position,

size, and orientation information is extracted from the AIS data, we can assume that the moving

polygon closely approximates the real movement and geometry of the vessel.

The experiments in this section thus correspond to the case where n = 5. The two constructed

tables are the following:

ships_point(mmsi integer, trip tgeompoint), and

ships_poly(mmsi integer, trip tgeometry).

After this transformation into a MobilityDB data format, the table sizes are respectively 4.4GB

and 5.5GB. We now compare the existing distance operator for moving points with the newly

implemented operator for moving polygons.

As a first example use-case, let us analyze the entrance of the port of Helsingborg. For security

reasons, when entering the port, the vessels should not come too close to the dyke at the entrance of

the port. Query 1 thus computes the temporal distance between the vessels stored as moving points

(1a) or polygons (1b) and a fixed point at the end of the dyke at the entrance of the Helsingborg

port. Figure 19(a) shows the position of this point as well as the trajectories of the vessels around

it. For demonstration purposes, the query is only run on the first day of data. The running time

of Query 1a is 3.65 seconds (average of 10 runs), while the same query on moving bodies (1b)

takes 5.06 seconds. Note that this is the total running time of applying the algorithm on the 6.5M

segments that make up the movement of the vessels. The distance operator for moving polygons
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Table 1. Running Time and Result of Query 2

Query Running Time (s) mmsi min_dist (m)

2a 3.59 265610940 10.42

2b 4.94 265041000 5.21

is thus about 1.4 times slower than the operator for moving points, which is to be expected due to

the increased complexity of the algorithm. Another thing to note here is that for the trips of table

ships_poly, 65.7% of the segments have a rotation angle of 0. This indicates that the optimized

solution for non-rotating polygons is heavily used in real-world use-cases.

Query 1a: SELECT distance(trip, 'Point(729493 6216766)')
FROM ships_point;

Query 1b: SELECT distance(trip, 'Point(729493 6216766)')
FROM ships_poly;

Let us also query for the vessel that came closest to the query point during its movement. Query 2

computes the nearest approach distance of every vessel to the query point and returns the vessel

id (mmsi) and distance of the vessel with the smallest nearest approach distance. Again, this query

is run with the vessels being represented as moving points (2a) and moving polygons (2b) for the

first day of data. Table 1 shows the running time and results of both queries. Consistently with

the results obtained in Query 1, the running times of Query 2 are similar since the processing of

the distance operator takes the majority of the query time. Looking at the result values, we can

see that the smallest distance is 10.42m when computed using moving points and 5.21m when com-

puted using moving polygons, which illustrates the gain in precision. More important is that the

vessels (identified by mmsi) returned by the queries are also different. This means that the impres-

sion introduced by computing distances using the moving point approximation led to returning a

wrong vessel id in this query. This result is also visualized in Figure 19(b).

Query 2a: SELECT mmsi,
nearestApproachDistance(trip,

'Point(729493 6216766)') AS min_dist
FROM ships_points
ORDER BY min_dist LIMIT 1;

Query 2b: SELECT mmsi,
nearestApproachDistance(trip,

'Point(729493 6216766)') AS min_dist
FROM ships_polys
ORDER BY min_dist LIMIT 1;

In a second experiment, we demonstrate the scalability of the algorithms. As reference geome-

tries, we generate a point and five convex polygons of varying sizes that we arbitrarily placed

below the island of Læsø. Table 2 lists the generated geometries with their number of vertices, and

Figure 20 shows four of these geometries on the map. Note that since we are working with convex

polygons, the polygon with 75 vertices already has a smooth contour. We thus limit ourselves to

polygons with at most 75 vertices. To link this experiment to a practical problem, the generated

polygons can be seen as the extent of an offshore wind farm. European member states and, in par-

ticular, Denmark already possess many offshore wind farms5 and are planning on adding more to

5www.4coffshore.com/windfarms/denmark/
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Table 2. Sizes of the Generated Geometries

Geometry Name Point A Poly B Poly C Poly D Poly E Poly F

# of Vertices 1 5 10 25 50 75

Fig. 20. Visualization of four generated geometries: Point A (yellow) and Poly B (green), C (Blue), and F (red).

Fig. 21. Duration of temporal distance queries in function of the number of trajectories. Queries A (Poly)
and B–F use the polygon representation of the vessels, while query A (Point) uses the point representation.

be able to meet ambitious goals related to renewable energy.6,7 For security reasons, vessel traffic

cannot come within a certain distance of these wind farms [25]. When planning a new project, it is

thus important to know the distance between the planned wind farm and the surrounding vessel

traffic.

In this experiment, we compute the temporal distance between the vessel trajectories in mov-

ing polygon representation and each of the generated reference geometries. Additionally, we also

compute the temporal distance between the moving point representation of the trajectories and

the first point geometry, since this is currently the only existing distance function for moving ob-

jects in MobilityDB. Figure 21 shows the query duration for data sizes varying from 1 day to a

full month of data. For the full data size, computing the temporal distance between the moving

polygons and a static geometry takes about 80 seconds.

The first thing we note in the figure is that computing the distance for the polygon representa-

tion of the vessels is at most 1.5 times slower than for the point representation. This is coherent

6energy.ec.europa.eu/news/member-states-agree-new-ambition-expanding-offshore-renewable-energy-2023-01-19_en.
7www.offshorewind.biz/2023/02/20/denmark-to-auction-off-9-gw-of-offshore-wind-in-2023/
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Fig. 22. (a) Relation between the number of trajectories and the number of segments. (b) Duration of tem-
poral distance queries in function of the number of segments.

with the result from the previous experiment. Second, the polygon-to-point algorithm (A Poly) is

ever so slightly faster than the polygon-to-polygon algorithm (B–F), which is expected since the

polygon-to-polygon algorithm needs to solve more complex equations to determine changes in

closest features. Lastly, the number of vertices of the second polygon does not visibly influence

the duration of the query. Indeed, the duration of the algorithm is linked to the number of changes

in closest features. For many trajectories that are relatively far away from the wind farm geometry,

increasing the number of vertices of the geometry will not directly increase the number of changes

in closest features during the movement.

The last remaining particularity of Figure 21 is the shape of the graph. Notice that the data

size is given in terms of number of trajectories. Each trajectory represents a sequence of linear

segments, as discussed at the end of Section 3. The distance algorithm is thus called subsequently

on each individual segment. Querying the distance for trajectories with more segments would thus

take longer than for trajectories with fewer segments. Looking at Figure 22(a), we can indeed see

that the total number of segments does not increase linearly with the number of trajectories. This

means that some trajectories contain more segments than others. Plotting now the query duration

in function of the total number of segments (Figure 22(b)), we can see that the query duration

is linear in terms of trajectory segments. The average duration per segment is 539ns, 775ns, and

800ns for the point-to-point, polygon-to-point, and polygon-to-polygon algorithms, respectively.

The last value is computed as the average of the four polygon-to-polygon queries since they all

have similar duration.

8 CONCLUSION

To conclude, we described the problem of computing the time-varying distance between a contin-

uously moving body and other static and moving objects in 2D and presented algorithms to solve

this problem efficiently. When the moving bodies are convex, the algorithm computes the evolu-

tion of their closest features in O (loд(n) + k ) time, where n is the total number of vertices, and k
is the number of times the closest features change (size of the result). This evolution is stored as a

list of length k that, together with the initial moving bodies, completely determines the equation

of the temporal distance between the moving objects. This list can thus be used to determine the

distance at a given timestamp in O (loд(k )) time.

Around this distance algorithm, multiple extensions have been described. First, we developed

an optimization for the case where the movement contains no rotation. This case appeared to
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be the most common one in the test we performed on a real dataset. Second, the algorithm was

generalized for non-convex polygons. Finally, we described how this algorithm, together with an

additional linear approximation step, is used to implement the distance operators specified in the

OGC Moving Features Access standard in the moving object database MobilityDB.

The experiments confirm the linear complexity of the algorithm in terms of k and show a 5–8×
speedup when using the optimized algorithms for non-rotating moving bodies. Additionally, we

show that the increased complexity of representing vessels using moving polygons can result in

increased precision during distance computations with only a 1.4x increase in computation time.

This article presents a solution for moving objects in 2D, but the idea of tracking the closest

features between two objects can also be applied in 3D. In this case, the moving bodies are ei-

ther 3D points or polyhedrons, and the features are vertices, edges, or faces of the objects. Future

work would thus be to generalize this algorithm to compute the time-varying distance between

3D moving bodies.
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