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Abstract
Underwater noise pollution from human activities, particularly shipping, has been recog-
nised as a serious threat to marine life. The sound generated by vessels can have various
adverse effects on fish and aquatic ecosystems in general. In this setting, the estimation and
analysis of the underwater noise produced by vessels is an important challenge for the preser-
vation of the marine environment. In this paper we propose a model for the spatiotemporal
characterisation of the underwater noise generated by vessels. The approach is based on the
reconstruction of the vessels’ trajectories from Automatic Identification System (AIS) data
and on their deployment in a spatiotemporal database. Trajectories are enrichedwith semantic
information like the acoustic characteristics of the vessels’ engines or the activity performed
by the vessels. We define a model for underwater noise propagation and use the trajectories’
information to infer how noise propagates in the area of interest. We develop our approach
for the case study of the fishery activities in the Northern Adriatic Sea, an area of theMediter-
ranean Sea which is well known to be highly exploited. We implement our approach using
MobilityDB, an open source geospatial trajectory data management and analysis platform,
which offers spatiotemporal operators and indices improving the efficiency of our system.
We use this platform to conduct various analyses of the underwater noise generated in the
Northern Adriatic Sea, aiming at estimating the impact of fishing activities on underwater
noise pollution and at demonstrating the flexibility and expressiveness of our approach.
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1 Introduction

Underwater noise generated by human activities, especially from shipping, is known to
produce short- and long-term effects on marine animal species. This noise pollution can
disrupt the natural acoustic environment, leading to several adverse consequences. Some
of the negative impacts include interference with communication, changes in behaviour,
stranding, and increased mortality rates [1, 2]. Therefore, characterising underwater noise
in a specific area is crucial for monitoring the health of aquatic life, assessing potential
risks, and providing valuable information to ecologists and policymakers. This enables the
development of effective strategies to maintain a productive and healthy ecosystem.

However, measuring underwater noise is a complex and resource-intensive task. It neces-
sitates the use of hydrophones (underwater microphones) and requires a team of experts
for deployment and calibration. Once the data has been collected, it must be processed and
analysed to extract valuable insights. Additionally, there is the need to estimate underwa-
ter noise in areas where data collection is impractical or to extend coverage beyond what
the hydrophones can monitor. Many approaches in the literature rely on acoustic models
generated through numerical simulations to predict sound levels in the target area (see e.g.
[3–5]). These models simulate sound propagation by accounting for reflection, diffraction,
and absorption phenomena. They require precise input data and significant computational
resources to create accurate acoustic maps. Typically, these models consider various envi-
ronmental variables (like sea temperature, wind, waves, and salinity), detailed bathymetric
information, and sound speed profiles at different depths. They may also incorporate Auto-
matic Identification System (AIS) data to track vessel movements and include their noise
emissions in the simulations.

In this paper, we follow a complementary approach that avoids using numerical simulation
and fully relies on AIS data to calculate the underwater noise generated by vessels in space
and time. Similar approaches in the literature are e.g., Erbe et al. [6] and Neenan et al. [7],
where the authors’ main goal is to readily provide noisemaps of the area of interest. However,
rather than developing an ad-hoc analysis for a specific case study, our aim is to propose a
conceptual framework for underwater noise characterisation that can be easily instantiated
on any sea area and can be used as a quick and effective means to monitor the noise pollution.

Our framework is based on semantic trajectories [8, 9]. Starting from AIS data, we recon-
struct the vessel trajectories and deploy them in a spatiotemporal database. These trajectories
are enhanced with semantic information, such as the acoustic characteristics of the vessels’
engines and the activities conducted along their paths, which are then used to infer how the
noise spreads in the area of interest.

To showcase the potential of the approachwe consider the fishing activities of theNorthern
Adriatic Sea, which is known to be one of the most exploited areas of the Mediterranean Sea,
so the underwater noise pollution is certainly among the effects of the intensive fishery activ-
ity.We build on our previouswork [10, 11], which describes and implements a spatiotemporal
database of the fishing activities in the Northern Adriatic Sea, and on a preliminary underwa-
ter noise model presented in Rovinelli et al. [12]. The trajectories of the fishing vessels are
reconstructed starting from the AIS data, sent by ships and received by ground stations on the
Italian coast. The dataset considered in this paper comprises all AIS data of the Italian and
Croatian fishing vessels for the year 2020. In order to determine the acoustic characteristics
of the vessels’ engines and fine tune the propagation model, we take advantage of the direct
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acoustic measurements produced by the Interreg project SOUNDSCAPE [13] that carried
out an acoustic monitoring in the Northern Adriatic Sea from March 2020 to June 2021.

To estimate the generated noise, we define a model for underwater sound propagation and
instantiate it by considering four different frequencies. We present the theoretical laws gov-
erning the underwater sound propagation and we also describe how we obtain the estimation
for source sound levels, propagation loss and ambient noise, necessary for the definition of
the model. We then use the spatiotemporal database to calculate the noise produced along
the vessel trajectories. The sea area is partitioned into a regular grid composed of square spa-
tial cells (1km × 1km) which are enriched with environmental features such as sea surface
temperature, sea salinity, and pH. Instead of using physical listening points (hydrophones),
we treat the centroid of each cell as a virtual listening point where we calculate the received
sound level.

The conceptual framework has been implemented in MobilityDB [14], an open-source
platform for managing and analysing geospatial trajectory data. We use this platform to
conduct various analyses that aim at estimating the impact of fishing activities on underwater
noise pollution and at demonstrating the flexibility and expressivity of our approach. We
first investigate the underwater noise generated by fishing activities at different frequencies.
Then we look into the effects of the COVID-19 in the Northern Adriatic Sea, by comparing
the underwater sound pressure levels in two periods, April and June 2020, i.e., during, and
after the lockdown imposed in Italy. We also examine how fishing activity varies throughout
the days of the week, focusing our analysis on the most intense fishing days - Monday to
Thursday. Finally, we show that our tool allows for the visualisation of the underwater noise
dynamics for a set of vessels chosen by the user according to several criteria.

The new contributions of this work w.r.t. the preliminary version presented in Rovinelli
et al. [12] are the following:

• The underwater noise propagation model has been refined w.r.t. three main aspects. First,
we integrate the contribution of speed in the computation of the source level of ships. In
fact, as noted in [15], speed can influence the broadband source level of ships. Second,
the transmission loss is no longer modelled simply by a spherical spreading law, but
it is implemented as a combination between spherical propagation and mode stripping
following [16]. This allows us to take into consideration the bathymetry of the study
basin. Third, the ambient noise is no longer a constant value; it is computed using the
exceedance level L90 [17], which represents the sound level exceeded 90% of the time.
As mentioned in [18], L90 can be referred to as common natural acoustic conditions.

• We instantiate the refined model by considering not only the frequency of 63 Hz but
also of 125 Hz, 400 Hz and 4000 Hz. The frequencies of 63 Hz and 125 Hz are the
ones established as standard frequencies by the European Marine Strategy Framework
Directive (MSFD)while 400Hz and 4000Hz allow us to show the increasing significance
of environmental factors at higher ranges. For each frequency we calibrated the model
parameters, specifically the source level of the ships, the ambient noise, the increment
due to fishing and the transition range between spherical and mode stripping. The four
considered frequencies provide a comprehensive view of the impact of fishing activities
in the Northern Adriatic Sea.

• We propose an improved algorithm for calculating the noise level induced by the vessels.
This new algorithm is based on the refinedmodel of noise propagation and it is parametric
with respect to the frequency of interest.
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• The MobilityDB implementation has been enhanced by extensively exploiting the tem-
poral types and spatiotemporal operations offered by MobilityDB. The result is a more
compact and efficient code, leading to better execution times.

• Weuse the improved underwater noise propagationmodel and implementation to conduct
several new analyses illustrating the impact of the fishing activities on underwater noise
pollution in the Northern Adriatic Sea. These are only a few examples of the analyses
that can be performed using the spatiotemporal database we have created.

The paper is organised as follows. Section 2 presents the literature on underwater noise
characterisation. Section 3 details the data sources used in this study. Section 4 describes our
model for the underwater sound propagation. Section 5 outlines the trajectory reconstruction
and enrichment, the creation of a spatiotemporal database by means of MobilityDB and
the description of the algorithm computing the underwater noise maps. Section 6 presents
some analyses conducted on the obtained spatiotemporal database and some notes on model
validation. Finally, some closing remarks are outlined in Section 7.

2 Related work

Underwater noise arising from human activities is known to have various adverse effects
on aquatic life. These can range from acute effects such as permanent or temporary hearing
impairment to chronic effects such as developmental deficiencies and physiological stress [1,
2]. As a general study, we mention the work by Cruz et al. [19] that summarised the status
of European waters regarding continuous underwater radiated noise from shipping. The goal
was to provide recommendations on possible future activities. Thework focused on fourmain
topics: characteristics and quantification of noise sources from various ship types, impacts on
marine fauna, existing policies, including guidelines, decisions, resolutions and regulations
and mitigation measures for the abatement of ship noise and noise-related impact.

The specific topic of interest in this paper, i.e. underwater noise generated by (fishing)
vessels, has been explored by various authors in the literature. Below,we review some relevant
contributions classified into three categories: (i) works relying on direct underwater noise
measurements, (ii) approaches based on acoustic models obtained by numerical simulation,
and (iii) proposals - like ours - that use only AIS data along with a sound propagation model.

2.1 Underwater noise characterisation by direct measurements

Some works in the literature address the issue of underwater noise data acquisition, trans-
mission and storage. The most interesting one in our perspective is the dataset produced by
the SOUNDSCAPE project [13], which carried out an acoustic monitoring of the Northern
Adriatic Sea fromMarch 2020 to June 2021.Ninemonitoring stationswere set up that encom-
pass different environmental characteristics. Two datasets have been released, composed of
20 and 60 seconds averaged sound pressure level (SPL) data in a wide range of frequen-
cies collected at the nine stations. SPL is the level of the root-mean-square sound pressure
expressed in decibel, relative to a reference value of 1μPa [20]. These datasets are available
on Zenodo [21] and the whole process of data acquisition, storing and post-processing is
described by Petrizzo et al. in [22]. Furthermore, Picciulin et al. [18] perform some analyses
and describe the spatial and temporal variations of the sound pressure levels recorded by the
SOUNDSCAPE project during the monitoring period.

Other approaches propose methods for acoustic real-time measurements and monitoring,
such as Diviacco et al. [23] and Moran et al. [24]. Differently, Farcas et al. [25] carried out
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multi-site measurements to validate a large-scale shipping noise map constructed using a
generic shipping noise model. Finally, the work by Picciulin et al. [26] shows two acoustic
surveys conducted at 40 listening points distributed along the three inlets that connect the
Venice lagoon to the sea, in order to characterise the local noise levels and evaluate the fish
spatial distribution by means of its sounds.

2.2 Approaches based on numerical simulation

Most of the approaches to underwater noise characterisation are based on acoustic models
obtained by numerical simulation to predict the sound levels in the area of interest. They
simulate sound propagation taking into consideration reflection, diffraction and absorption
phenomena and require precise information in input and a relevant computational effort
(in terms of time and resources) to produce the acoustic maps of the area of interest. Such
models usually account for many environmental variables (e.g. sea temperature, wind, waves,
salinity), precise bathymetry information and sound speed profiles, possibly at different sea
depths. They use AIS data to derive the vessels’ trajectories and include their emitted sound
into the model. The results obtained are often validated through real acoustic data measured
on specific sites.

As a first approach in this category, we mention the work by MacGillivray et al. [3]. The
authors present an acoustic model to predict anthropogenic sound levels at the Great Barrier
Reef Marine Park in Australia. The model uses AIS data and wind speed data to simulate
the time-dependent noise field in the area of interest and for the frequencies 64 kHz and
375 kHz. The model uses three months of AIS data and assign acoustic source levels to each
vessel according to predefined values already calculated for the various vessels categories.
The model includes environmental parameters such as ocean temperature and salinity as well
as bathymetry information. The obtained results were compared against real data collected
by an acoustic recorder placed on a specific site in the same period.

A similar approach is used by Larayedh et al. [4] to investigate the shipping noise in the
Red Sea for the frequency band 40-100Hz. The acousticmodel, based on simulation, includes
twomonths of AIS data belonging to specific categories of shipping vessels (tankers, bulkers,
container ships, open hatch vessels and vehicle carriers), whose sound levels were derived
from [27]. Bathymetry data, sea temperature and salinity are included, as well as spatial and
temporal sound speed profiles specifically calculated for the Red Sea. The authors emphasise
the computational effort needed to calculate the resulting maps of predicted noise levels,
which required the use of a supercomputer. Results include the maps of predicted spectral
noise level (averaged over the considered frequency band) for a specific day at different
depths, and maps considering the two months under exam.

Along the same line, Ghezzo et al. present in [5] a numerical reconstruction of the sound
field in the Northern Adriatic Sea basin for the year 2020. Acoustic modelling was performed
by the Quonops c© [28] underwater noise prediction system, which is based on simulation.
Natural Sound Mapswere produced by taking into account the sound propagation properties
of the local environment (hourly wind and waves data, daily mean sea temperature and
salinity, bathymetry data). Additionally, a combination of natural sources and AIS-based
marine traffic were used to produce the Baseline Sound Maps. The AIS dataset included all
types of vessels and the source level noise produced by the various categories of vessels
were derived from [27]. The trawling activity of the fishing vessels was taken into account
to consider an increased noise level when the trawler is in use. Calibration of the AIS-based
model was performed using the SOUNDSCAPE [13] measured data. The authors present
annual Baseline sound maps and excess 20 dB sound maps for the frequencies 63 Hz, 125 Hz
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and 250 Hz. The study included specific analyses on protected areas of the Northern Adriatic
Sea.

Thework byGhezzo et al. [5] is very relevant to our study as it examines the same area (the
Northern Adriatic Sea), period (2020), and source of ground truth data (the SOUNDSCAPE
time series measurements) as well as some common frequencies (63 Hz and 125 Hz), while
adopting a different approach (ours falls under the category of “Approaches Based on AIS
Data” described in the next subsection). Unfortunately, the results of the two studies cannot
be directly compared. In fact, since we currently have access only to AIS data from fishing
vessels, our results are based solely on this datawhereasGhezzo et al. consider theAIS data of
all types of vessels.Moreover, it is important to note that our primary goal is different from [5]:
we aim to provide a flexible tool for performing, with reduced computational effort, a number
of various analyses, not limited to the generation of noise maps. This is made possible by the
creation of a spatiotemporal database which stores semantically enriched vessel trajectories.

2.3 Approaches based on AIS data

Other proposals in the literature avoid the use of numerical simulation and give a more
simplified description of the sound propagation effects. They are based on AIS data and they
usually adopt a sound propagation model to calculate the transmission loss in the area of
interest. The goal is to readily provide acoustic maps that can be used by policymakers for
a first quantitative spatiotemporal underwater noise evaluation. They are computationally
efficient, even for large datasets.

As a first approach in this setting, we mention the one by Erbe et al. [6] that uses the
ship transits derived from AIS data and provided by the Canadian Guard Coast. The authors
apply a sound propagation model to derive a cumulative large-scale noise map of the area
of interest for the frequency band 10-2000 Hz. The authors include a comparison with field
measurements. Similarly, Neenan et al. [7] develop a vessel noise modelling method using
AIS data and online data on estimated source levels of individual ships. The authors divide
the area of interest into a spatial grid of 1 × 1 km and consider a single frequency of 80 Hz.
They calculate the propagation loss in a 5 km ray around each vessel’s position taking into
account also sediment type and bathymetry. The goal is to produce heatmaps of average
received sound levels over monthly periods.

The approach followed in this paper is similar to that in [6, 7] since we also use AIS
data and a model of sound propagation to derive a spatiotemporal characterisation of the
underwater noise of the area of interest. However, the main goal of the works [6] and [7]
is to produce cumulative noise maps. Instead, in our approach, cumulative noise maps are
only one of the possible outputs. The two key features that distinguish our approach are the
use of semantic trajectories and their deployment into a spatiotemporal database. Semantic
trajectories enable the association of semantic informationwith trajectories, like the activities
performed by a vessel during the trip. The spatiotemporal database allows for answering
any query about underwater noise at different temporal and spatial granularities, with the
possibility of considering any set of vessels. For example, a user can visualise the noise
produced by a single vessel along its trajectory, accounting for increased noise while fishing,
generate noisemaps for a specific area and time period, or create time-lapse videos illustrating
underwater noise dynamics.

A further proposal in this setting that demonstrates the potential of using AIS data for
underwater noise estimation is Jallkanen et al. in [29]. This work uses worldwide terrestrial
and satellite AIS data covering the years 2014-2020 and the STEAM (Ship Traffic Emission
Abatement Model) tool by the Finnish Meteorological Institute [30] to estimate vessel noise
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Table 1 No. of vessels, AIS
records, and trips for the year
2020, April, and June 2020

Period No. Vessels No. AIS records No. Trips

Year 2020 714 92, 916, 965 72, 776

April 2020 548 5, 392, 677 4, 923

June 2020 642 9, 841, 079 7, 462

source levels. The STEAM model predicts instantaneous vessel noise levels that were then
cumulated over time to produce a noise source energy map. The instantaneous noise levels in
each vessel position (and in a sphere around the source)were reported in a spatiotemporal grid
cell, whose resolution is 0.1o (WGS84 coordinate system). The gridded data were produced
for the frequencies 63 Hz, 125 Hz and 2000 Hz. Results included a quantification of the
global underwater noise emissions from shipping in the period 2014-2020 (showing that at
the current rate the emissions are doubling every 11.5 years), a study of the emissions in
different areas (showing a large variability of shipping noise in different regions), a study
on the emissions during the COVID-19 pandemic (showing a drastic reduction of emission
levels globally) and a study of the emissions of the various vessels categories (indicating that
container ships are the largest contributor to shipping noise emissions).

3 Data sources

In this section, we present the data sources used in this study. Specifically, four datasets
are employed: AIS data, information on vessel characteristics, environmental data, and
hydrophone data from the SOUNDSCAPE project.

Automatic Identification System (AIS) The Automatic Identification System (AIS) was
originally developed as a tool to enhance navigation safety by helping to prevent colli-
sions between vessels as it allows their detection. The International Maritime Organization1

(IMO) requires AIS transmission for ships with a gross tonnage of 300 tons or more, all
passenger vessels, and any boat exceeding 15 metres in length. Specifically, AIS data include
several key components: the vessel’s name; the Maritime Mobile Service Identity (MMSI),
which uniquely identifies the vessel; its International Maritime Organization (IMO) number;
the vessel’s call sign; its position, given by latitude and longitude coordinates (in decimal
degrees); the timestamp of the transmission (in UTC); speed over ground (SOG); course over
ground (COG); heading; length overall (LOA); and the vessel type (e.g., cargo, sailing boat,
fishing vessel). In some cases, AIS data may also provide details such as the starting port,
destination, and estimated time of arrival.

We work on a dataset provided by the Italian Coast Guard, consisting of terrestrial AIS
data for trawl fishing vessels operating in the Northern Adriatic Sea from January 2020 to
December 2020. We remark that this dataset is not public and, currently, we do not have
access to AIS data from other types of vessels. It is important to note that the year 2020
represents a period of restricted shipping activity due to the COVID-19 pandemic outbreak.
In Italy, a lockdown was imposed from March 9, 2020, until May 18, 2020, during which
many activities, including restaurants, were either closed or had to limit their operations. In
this study, we focus on April and June 2020, to investigate the differences in environmental
pollution during a period when all activities were significantly reduced, compared to a period
of regular maritime operations. Table 1 reports the number of vessels, AIS data records, and
trips for the year 2020, as well as for April and June 2020.

1 https://www.imo.org/
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Vessel Information In addition to AIS data, knowing the characteristics of the vessels is
crucial. Specifically, the Italian Coast Guard provided us with a dataset containing several
attributes related to the fishing vessels, including the MMSI of the vessel, the vessel’s name,
its country, the name of the port where the vessel is registered, the type of gear used, and the
engine power (in horsepower). The engine power is particularly important for this study, as
it is used to estimate the underwater noise generated by the vessel, as detailed in Section 4.2.

Environmental Data To calculate the propagation of underwater sound, it is essential to
consider the environmental factors that play a crucial role in sound absorption. Therefore, we
consider daily measurements of sea surface temperature (in degrees Celsius), daily measure-
ments of sea salinity (in PSU, Practical Salinity Units), seawater potential of hydrogen (pH),
and sea depth (in metres). The temperature dataset includes 2754 daily measurements, while
the salinity and pH datasets each contain 3469 daily measurements. Temperature, salinity,
and pH data are sourced from Copernicus,2 whereas sea depth information, consisting of
48826 records, comes from the European Marine Observation and Data Network (EMOD-
net).3 These environmental features are used to calculate the absorption of sound in seawater
(denoted as α) detailed in Section 4.3.

Hydrophone Data To determine the acoustic characteristics of the vessels’ engines and fine
tune the propagation model, we leverage direct acoustic measurements from the Interreg
Project SOUNDSCAPE [13, 21]. The SOUNDSCAPE dataset is composed of 20 and 60
seconds averaged sound pressure levels (SPLs, dB ref 1μPa), recorded across a wide fre-
quency range divided into third-octave bands. These data were collected at nine monitoring
stations from March 2020 to June 2021, including the first full lockdown period related to
the COVID-19 pandemic (March-May 2020). Figure 1 illustrates the positions and names of
the nine monitoring stations set up by the project SOUNDSCAPE.

In this work, we use the 60-second interval dataset and focus on the 63 Hz and 125 Hz
frequencies, which are considered standard by the European Marine Strategy Framework
Directive (MSFD), as well as on 400 Hz and 4000 Hz, due to the increased significance
of environmental factors at higher ranges. Higher frequencies are particularly relevant for
communication between dolphins.

Table 2 presents, for each hydrophone, its location (latitude and longitude) and the number
of records in the dataset of 60-second averaged SPLs (one-third octave, base 10), covering
the period from March to December 2020, as well as the months of April and June 2020.

4 Underwater noise model

In this section we describe amodel for underwater sound propagation that is used in Section 5
to provide a spatiotemporal characterisation of underwater noise in the Northern Adriatic
Sea. We present the theoretical laws governing underwater sound propagation, and we also
describe how we obtain the estimation for source sound levels, propagation loss and ambient
noise, necessary for the definition of the model. We recall that the estimation is based on the
60-second averaged SPL dataset released by the project SOUNDSCAPE and we focus on
the frequencies of 63 Hz, 125 Hz, 400 Hz and 4000 Hz, as explained in Section 3.

2 https://www.copernicus.eu/en
3 https://emodnet.ec.europa.eu/en
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Fig. 1 SOUNDSCAPE hydrophones in the Northern Adriatic Sea

4.1 Sound propagationmodel

The basic objective of noise modelling is to assess how much noise a particular activity will
generate in the surrounding area [31]: the aim is to model the received noise level (RL) at
a given point (or points), based on the sound source level (SL) of the noise source, and the
amount of sound energy which is lost as the sound wave propagates from the source to the
receiver (transmission loss or propagation loss, TL). The relation between these quantities is
encapsulated in the classic sonar equation [32]:

RL = SL − T L (1)

Table 2 Location and number of records for each hydrophone in the 60-second averaged SPL dataset from
the SOUNDSCAPE project (March-December 2020, April 2020 and June 2020)

Monitoring station Longitude Latitude Mar-Dec 2020 April 2020 June 2020

MS1 - Venice (IT) 12◦30.883′ 45◦19.383′ 387, 432 30, 660 36, 237

MS2 - Rimini (IT) 12◦42.656′ 44◦10.254′ 340, 928 43, 200 43, 200

MS3 - Ancona (IT) 13◦40.932′ 43◦31.954′ 343, 479 31, 663 29, 767

MS4 - Trieste (IT) 13◦33.917′ 45◦37.095′ 318, 533 43, 078 43, 032

MS5 - Susak Lošinj (HR) 14◦17.293′ 44◦29.545′ 418, 330 39, 615 39, 173

MS6 - Lošinj (HR) 14◦34.510′ 44◦32.747′ 387, 488 12, 126 38, 955

MS7 - Žirje (HR) 15◦36.020′ 43◦37.788′ 339, 706 - 43, 200

MS8 - Split (HR) 16◦25.336′ 43◦29.895′ 358, 889 43, 200 43, 141

MS9 - Ivana D (HR) 13◦15.720′ 44◦46.953′ 217, 928 43, 141 43, 141
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This straightforward expression is fundamental to modelling underwater noise, and its sim-
plicity belies considerable complexity in the task of computing the transmission loss in order
to estimate the received noise.

Sound propagation is profoundly affected by some factors such as the conditions of the
surface and bottom boundaries of the sea as well as by the variation of sound speed within
the ocean volume [33]. Air has a density 800 times lower than the density of water, therefore
a sound that propagates inside the water has a higher propagation speed, equal to about
1500 m/s, against about 340 m/s of air. So, with a sampling period of 60 seconds it makes
sense to neglect propagation timewithin the area affected by a sound source (area of influence)
and, within the sampling interval, consider the noise level distribution as stationary. When
a boat switches the engine on, we consider the noise as instantaneously propagated in the
area of influence within the sampling period, without actually propagating the wavefront in
space-time.

Sound propagation speed is also influenced by various chemical-physical factors such as
temperature, salinity and pressure [34], varying both during the day and with the seasons in
the superficial part [35], and with depth. In shallow water, that is the predominant context in
Northern Adriatic Sea, sound wave reflections off the seabed strongly affect propagation, and
bathymetry plays an important role in determining propagation loss [16]. The computation of
the transmission loss considering all these parameters is not a simple task and for this reason
various models have been introduced. Before discussing the transmission loss, however, we
focus on how to evaluate the source level, that is, in our case, the noise generated by the
fishing vessels.

4.2 Source level estimation

The principal sources of underwater noise are machinery, propellers, and cavitation. Our AIS
dataset and the vessel information dataset contain details about fishing boats, including length
overall (LOA), engine horsepower, and fishing gear. However, these datasets do not include
direct measurements of the sound pressure levels of the fishing vessels. So, we need to infer
such values considering the general literature about underwater noise and the measurements
provided by the SOUNDSCAPE project.

A first issue is how to evaluate the increase of noise when a trawler is in action. Many
studies focus on assessing the noise of vessels when they are free-running (i.e., when they
are not performing fishing activities). However, trawling vessels typically generate higher
levels of radiated noise compared to free-running vessels operating under the samemachinery
settings [36]. While published data on the radiated noise from operating trawling vessels are
limited, some studies have reported increases in radiated noise ranging from 5 dB to 15 dB
during trawling activities [37]. Specifically, in [36] it is noted that the effect of trawling is
minimal below 100 Hz and increases with frequency. Accordingly, we assign an increase of
5 dB at 63 Hz when the vessel is trawling, 10 dB at 125 Hz, and 15 dB at higher frequencies,
specifically at 400 Hz and 4000Hz. This approach aligns with the findings in [37] and reflects
the change in source levels during trawling as discussed in [5].

To recover the sound pressure level of a specific fishing vessel, we consider the mea-
surements of the hydrophone MS9 located at 13◦15.720E 44◦46.953N , in the middle of
Adriatic Sea (see Table 2), with 42m-depth, terrigenous sandy seafloor, taken on March 31,
2021 between 5:40 pm and 5:55 pm. Here, there is a unique fishing vessel crossing nearby
the hydrophone and taken as the reference boat. Thus, the recorded noise is associated to
the trip 1001 of the reference boat (length=27.45 m, engine power=835 Hp), while trawling
at about 3.9 kn (knots) between 500 m and 60 m from the hydrophone. A linear regression
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was performed between the measured values of SPL, expressed in decibel, and logarithmic
distance, thus allowing to assign a vessel with an 835 Hp engine, when not trawling, an
estimated source level (at the conventional distance of 1 m from the point source) that varies
with frequency as reported in Table 3.

In order to associate the source levels to all the other vessels, we need to relate the
sound pressure level to the engine horsepower, the latter being available in our dataset. If
we assume that a constant fraction of engine power gets converted into acoustic power (i.e.
acoustic power scales linearly with horsepower), then 3 dB are added per doubling in engine
power. We adopt such a linear progression on logarithmic scale of engine power and the
resulting value is denoted with SL0. For example, for engines between 100 Hp and 835 Hp,
considering a frequency of 63 Hz, we obtain a range between 123 dB and 136 dB.

Differences in source level may result from variations in speed. Specifically, as noted
in [15], the intrinsic factor of speed can influence the broadband source level of ships accord-
ing to the following relation:

SL =
{
SL0 if v ≤ v0

SL0 + 15.39 dB × log10
v
v0

if v > v0
(2)

where v0 = 3.9 kn corresponds to the speed of the reference boat and v is the actual speed
of the vessel. For simplicity, we assume that our model source boat radiates uniformly in all
directions, although the acoustic signature of actual boats in navigation is louder from the
side-aspect and stern-aspect than from the bow-aspect.

4.3 Transmission loss

In the ideal scenario, where surface and seabed reflections as well as absorption losses are
neglected, and propagation speed is uniform, simple spherical spreading governs transmission
loss [38]:

T L = 20 × log10(r) (3)

where r is the distance between the source and the receiver.
As observed in more realistic scenarios, sound will initially exhibit spherical spreading at

short distances, where boundary effects are negligible, followed by cylindrical spreading at
long ranges. In between, there is a transition region where neither spherical nor cylindrical
spreading accurately describes the sound propagation. This situation can be approximated by
assuming a sudden shift from spherical to cylindrical spreading at a transition range rtrans.
While some recommend using the water depth as a rough estimate for this transition range, it
is important to use this approach with caution. As highlighted in [38], the optimal transition
range rtrans varies depending on seabed characteristics. Simulation by parabolic equation
modelling [39] (confirmed by normal-mode modelling) shows that for a flat bottom at 50 m-
depth (soft seabed, ρ = 1500 kg/m3, c = 1700 m/s), there is about 48 dB attenuation at
400m, corresponding to over 8 doublings with spherical attenuation. Between 2 and 4 km the
attenuation is about 4.5 dB, which is compatible with mode stripping attenuation (between

Table 3 SPL for the reference
boat at different frequencies

63 Hz 125 Hz 400 Hz 4000 Hz

SPL (1m) 136 dB 133 dB 126 dB 123 dB
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spherical and cylindrical): 15 log10(r). Propagation modelling and experimental measure-
ments in [40] show decreased attenuation in shallow water. For soft seabeds, propagation
loss is greater than for hard seabeds, but attenuation is lower at 15 m than at 30 m depth.
Up to 100 m, at 30 m-depth, with soft seabed, sound pressure decrease is almost identical to
spherical spreading. At 15 m-depth, with soft seabed, sound pressure decrease is spherical
up to about 60 m, then the decrease is much lower. The same study reports a 4 dB increase in
sound level when speed changes from 6 to 11 kn, confirming the velocity-dependent compo-
nent of 15.39 dB × log10

v
v0

from (2). In [16] Ainslie proposes a modification to cylindrical
spreading for long ranges, once the reflection losses due to multiple bottom reflections begin
to accumulate. Following [16], we adjust the propagation loss to implement the combination
between spherical propagation and mode stripping as follows:

T L =
{
20 log10(r) if r ≤ rtrans
15 log10(r) + 5 log10(rtrans) if r > rtrans

(4)

The 15 log10(r) dependence on range is known as mode stripping because it results from
the gradual erosion of steep ray paths (high-order modes) after multiple bottom reflections.
To determine rtrans, we refer to the trajectory of trip 1001 of the reference boat. At 63 Hz
the transition is expected to occur at around 400 m, approximately 10 times the water depth.
This indicates that rtrans is parametrically dependent on depth through a multiplicative factor
of 10. For the middle frequencies (125 Hz and 400 Hz) we set the commutation between
the two propagation regimes at 4 times the depth based on our simulations. For the highest
frequency (4000 Hz) we restrict such commutation range even further, to twice the depth.

With simple geometric spreading, the role of absorption in propagation is not accounted
for. Environmental absorption features may affect the transmission loss, especially for large
distances and high frequencies. Inmore realisticmodels, one needs to consider all the environ-
mental aspects that influence the soundpropagation underwater, by adding a termproportional
to distance from the source [38]:

T Ltot = T L + α × r (5)

In the literature there are several models for predicting the absorption of sound in sea water
which retain the essential dependence on temperature, pressure, salinity, acidity and other
environmental features. In the Francois and Garrison model [41] the general equation for the
absorption of sound in sea water, at a given frequency f , is given as the sum of contributions
from boric acid, magnesium sulfate, and pure water. At a frequency below 100 Hz only
the first contribution is relevant, as α is approximately of the order of 10−6 dB/m [38].
Specifically, at frequencies of 63 Hz and 125 Hz, α is on the order of 10−6 dB/m, while
at 400 Hz it increases to the order of 10−5 dB/m, and at 4000 Hz it reaches the order of
10−4 dB/m.

4.4 Ambient noise

The received noise level (RL) at a given point is computed starting from (1). However, the
formula does not consider the ambient (or background) noise, which is present in the marine
environment. The received noise level RL exceeding ambient noise is

RL = SL − T Ltot − AN (6)

where SL is the sound source level, T Ltot the transmission loss and AN the ambient noise.
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Weuse the SOUNDSCAPEmeasurements also to estimate the ambient noise. In particular,
we employed the exceedance level L90 [17], which indicates the sound level that is exceeded
90% of the time and is equal to the 10th percentile statistic. As mentioned in [18], L90 can be
referred to the common natural acoustic conditions. This sound level is very different at the
nine stations along the year and at the various frequencies (see Fig. 3 in [18]). Hence, for each
frequency and for eachmonth of the year, we compute the ambient noise map in the following
way. We partition the Northern Adriatic Sea into a regular grid composed of square spatial
cells (1km×1km). The cell size was defined by environmental experts to ensure an adequate
representation of sound propagation while maintaining a balance between computational
efficiency and spatial accuracy. Given a certain frequency and a month, to assign an ambient
noise value to each cell of our grid, we started from the cells where hydrophones are located:
we associated the exceedance level L90 of the hydrophone at the corresponding cell. Then we
applied an InverseDistanceWeighting (IDW) interpolationusingQGIS,4 anOpenSourceGIS
that supports viewing, editing, and analysis of geospatial data. In this type of interpolation, the
sample points are weighted so that the influence of each point decreases with distance from
the unknown point being estimated. This approach allows us to assign an ambient noise value
that varies for each grid cell, capturing the differences in underwater noise across various
regions of the Northern Adriatic Sea. For instance, in June 2020, at 63 Hz the most silent area
is Ancona (Italy) with an ambient noise of 60.78 dB and the loudest zone is Žirje (Croatia)
with a value of 82.62 dB. Instead, at 4000 Hz Ancona has an ambient noise of 84.65 dB and
Žirje reaches a value of 92.80 dB.

4.5 Aggregating received noise levels

At a measurement point that is equally distant from two equally-powerful sound sources, the
two contributions would add up in magnitude and phase. However, distinct and independent
sources, such as two boats, can be treated as incoherent sources. Even in a narrow frequency
band, there will be a random phase difference between the two sources. Therefore, the noise
in a 1/3 octave band around 63 Hz (or in any other band) gets increased by 3 dB if there
are two equal contributions, by 6 dB if there are four equal contributions, etc. [20]. More
precisely, what is added are the intensities, after inversion of the logarithmic function that
defines the decibel. Generally, if we have n sources reaching a cell with n different values of
RL, the total noise level is:

RLtotal = 10 × log10(10
RL1/10 + . . . + 10RLn/10) (7)

5 Implementation usingMobilityDB

In this section we develop a framework for the spatiotemporal characterisation of underwater
noise. As already mentioned, we partition the Northern Adriatic Sea into a regular grid
composed of square spatial cells (1km×1km) and we estimate the noise generated by the
fishing vessels in any cell at regular time intervals (every 60 seconds). We retain the 60-
second interval temporal resolution to be synchronised with the SOUNDSCAPE project’s
measurements. The overall process is illustrated in Fig. 2. Starting from AIS data, vessel
information, and hydrophone data, we estimate the source level produced by the vessels. We
then incorporate environmental factors and hydrophone data to enrich the grid of theNorthern

4 https://qgis.org/en/site/
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Fig. 2 Overview of the process consisting of three main steps: data sources, reconstruction and enrichment of
trajectories, and underwater noise propagation

Adriatic Sea with environmental variables such as sea salinity, sea surface temperature,
sea depth, pH, and ambient noise. Using AIS data, we reconstruct vessel trajectories and
further enhance them with semantic information, building on our previous work [10, 11],
as detailed in Section 5.1. Based on these semantic trajectories and the enriched grid, we
develop our sound propagationmodel, which is described in Section 5.2. Finally, we generate
underwater noisemaps,which are crucial for ecologists and policymakers to study underwater
noise pollution and ensure a productive and healthy marine ecosystem. Most of this process
(including trajectory reconstruction and enrichment, the development of the spatiotemporal
grid, and sound propagation modelling) is implemented using MobilityDB, a moving-object
database for managing and analysing trajectories. Further implementation details and the
advantages of using MobilityDB are discussed in Section 5.3.

5.1 Creation and enrichment of vessel trajectories

The first step consists in reconstructing the trajectories of the fishing vessels starting from
terrestrial Automatic Identification System (AIS) data, i.e., the AIS data sent by ships and
received by ground stations on the Italian coast of Northern Adriatic Sea. As described in
Section 3, AIS data contains the identifier of the vessel, called MMSI, its position and the
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time instant of the bearing, together with other information, like speed and course. Since boat
positions are recorded every 10-20 seconds, which correspond to a small spatial displacement
of the boat, trajectories are reconstructed by linear interpolation of the AIS data. Next, in
order to organise the data into distinct trajectories followed by the fishing vessels, also called
trips, the continuous movement of a vessel is split according to several criteria. For example,
a new trip begins when the vessel is inside a port area and there is no AIS transmission for
longer than a fixed time (see [11] for more details).

A trip consists of a sequence of segments obtained by connecting consecutive AIS points.
The next step is to enrich such trajectories with different kinds of semantic information,
called aspects, following theMASTERmodel [9]. Themodel distinguishes among long-term
aspects (associated with the full trajectory), volatile aspects (associated with the segments)
and permanent aspects (associated with the fishing vessel, derived from the MMSI). A long-
term aspect is the length and the duration of the trajectory whereas a permanent aspect,
defined for this specific work, is the sound level associated with the engine horsepower of
the vessel, SL0. This aspect is computed as specified in Section 4.2, and it is denoted by
mmsi .SL0. Two crucial volatile aspects are the speed of the vessel and the activity carried
out by the fishing vessel. We consider the following activities: in port, entering to and exiting
from the port, navigation and fishing. The in port, entering to port and exiting from port
situations can be deduced from the position of the extremes of the segment w.r.t. the port
area. If none of the previous cases applies, the fishing or navigation activities are established
on the basis of the average speed of the boat. This aspect is of fundamental importance for
the underwater sound propagation model, because when a boat is fishing it produces a much
more intense sound. Given a spatiotemporal point p = ((x, y), t) belonging to a segment s
((x, y) ∈ s) in a certain time interval I (t ∈ I ), p.speed denotes the speed of the vessel in
p, and we set p.fishing to 1 if the activity associated to the segment s during I is fishing, 0
otherwise.

5.2 Construction of the noise maps

In this section we describe the high-level procedure for assigning a noise level at a certain
frequency f induced by the fishing vessels to the cells of a regular grid, partitioning the
NorthernAdriatic Sea, every 60 seconds.We consider a set of spatiotemporal cellsG = S×T

where S is a regular grid consisting of 1km×1km spatial cells, and T is a set of time instants,
such that t0 is a fixed time instant and ti+1 = ti +60s. Hence, each spatiotemporal cell c ∈ G

consists of two components, (g, t), representing the spatial cell g at time instant t . For each
frequency f ∈ {63, 125, 400, 4000} we write G f to denote the set of spatiotemporal cells
annotated with pieces of information which possibly depend on the chosen frequency. The
annotations are: (i) ctd contains the coordinates of the centroid of g; (ii) depth stores the
depth of the sea in c; (iii) α stores the absorption of sound as defined in Section 4.3; (iv) an
records the ambient noise in c estimated as reported in Section 4.4; (v) rl records the total
noise received in c, i.e., by the centroid of g at time instant t . It is worth noticing that only
the latter three annotations depend on the frequency f.

Let T R be the set of the trajectories of the fishing vessels,G f be the spatiotemporal grid
with f ∈ {63, 125, 400, 4000}. Algorithm 1 computes the total received noise level for every
cell c ∈ G f at the frequency f. We use p↓1 to denote the projection on the first component
of the spatiotemporal point p, i.e., its coordinates, and d(z1, z2) for the Euclidean distance
between two spatial points z1 and z2.

The noise is estimated every 60 seconds at the selected frequency, i.e., in the time instants
belonging to T at frequency f . The centroids of the grid cells are considered as virtual
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Algorithm 1 Given T R, T, G f and f ∈ {63, 125, 400, 4000}, the algorithm computes the
total received noise level for each c ∈ G f at frequency f.
1: Let mp: map〈cell, float〉
2: for each tr ∈ T R do
3: for each t ∈ T do
4: p = (tr(t), t)
5: cp = unique cell c ∈ G f such that p ∈ c
6: v0 = 3.9
7: if p.speed > v0 then
8: SL = tr .mmsi.SL0 + 15.39 · log10 p.speed

v0
+ inc f · p.fishing

9: else
10: SL = tr .mmsi.SL0 + inc f · p.fishing
11: end if
12: rtrans = cp .depth · mult f
13: r = 10(SL−5·log10(rtrans)−cp .an)/15

14: for each c = (g, t) ∈ G f . d(c.ctd, p↓1) < r do
15: dist = d(c.ctd, p↓1)
16: if dist ≤ rtrans then
17: RL = SL − 20 · log10(dist) − c.α · dist − c.an
18: else
19: RL = SL − 15 · log10(dist) − 5 · log10(rtrans) − c.α · dist − c.an
20: end if
21: mp[c] = mp[c] + 10RL/10

22: end for
23: end for
24: end for
25: for each c ∈ G f do
26: c.rl = 10 · log10(mp[c])
27: end for

listening points (we have 43, 386 of these points), and consequently the noise received at a
centroid point models the noise in all the points of the cell at a certain time instant and at
frequency f .

In order to build the noisemap at frequency f , we get the positions of all the fishing vessels
at the same time instants, i.e., every 60 seconds. For each point (Line 4), we determine the cell
it belongs to (Line 5) and we calculate the noise generated by the fishing vessel (Lines 7–11)
obtained by adding to the sound level associated with the horsepower of the boat (mmsi.SL0),
a contribution related to the actual speed of the vessel in p (see (2)), and the noise due to the
fishing activity if it occurs in p. Notice that the latter, inc f , can range from 5 dB up to 15 dB
depending on the frequency, as discussed in Section 4.2. In Line 13, the sound propagation
radius r (expressed in metres), i.e., the distance at which the noise generated by the fishing
vessel gets drowned into ambient noise, is computed. This is obtained by using (6) and setting
the received noise (RL) to 0:

0 = SL − T Ltot − AN

In computing the radius we ignore the coefficient of absorption α in (5) for T Ltot , allowing
for a simplification of calculation and getting an overestimation of r , hence the approximation
is safe. With some simple mathematical steps we get r = 10(SL−5·log10(rtrans)−cp .an)/15 where
rtrans is the transition range when spherical propagation shifts to a lower attenuation. Its
value depends on the sea depth in cp (Line 12) and it varies according to frequency f ,mult f ,
ranging from 2 up to 10 times the sea depth, as explained in Section 4.3. Then, we propagate
the noise in the cells that are within the radius r (Lines 14–21) according to (4) and we
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compute the relative received noise level by (6). Finally, by using (7), we combine all the
received sound levels to obtain the total noise level at frequency f to be associated with the
cell (Line 26).

Concerning the complexity, let n = |T R|, m = |T|, k = |G|, a be the area of a grid cell
and r the largest radius arising in Line 13. Then the complexity is O(n · m · r2/a + k). The
factor r2/a is motivated by the fact that in Line 14we consider the cells in a neighbourhood of
radius r . Note that r depends on the source level, which is bounded by the maximum engine
power and the maximum speed of the monitored fishing vessels. In our case, the radius r for
each frequency is less than 71,254 m for 63 Hz, 111,399 m for 125 Hz, 31,802 m for 400 Hz,
and 5,478 m for 4000 Hz.

In order to process all this data and build our model, we used a machine that features 32
Intel(R) Xeon(R) CPU E5-4610 v2 processors running at 2.30 GHz, offering multithread
performance. It is equipped with 256 GB of DDR4 ECCRAM and it utilises a 500 GB RAID
5 storage configuration. On this machine we deployed PostgreSQL 16.6, PostGIS 3.5, and
MobilityDB 1.3. Regarding the execution time required to build the sound propagationmodel
from AIS data, it is important to distinguish between the reconstruction and enrichment of
vessel trajectories and the propagation of underwater noise. We provide the performance for
June 2020, as it is one of the months with the highest number of AIS records. Specifically,
the reconstruction and enrichment of fishing vessel trajectories from AIS data for this month
take only 46 minutes. The execution time of underwater noise propagation depends on the
frequency used, as it varies across frequencies due to differences in ambient noise, vessel
SL , the increase in SL during fishing activities, and the absorption coefficient α. For the
entire month of June, the execution time required to propagate the underwater noise, starting
from the semantically enriched trajectories, is approximately 44 hours for 63 Hz and 125 Hz
frequencies, 10 hours for 400 Hz, and 1 hour for 4000 Hz.

This paper focuses primarily on assessing the feasibility of the model and demonstrating
its potential through various analyses, rather than optimising its efficiency. A more in-depth
evaluation of computational performance, including code optimisation and execution time
improvements, is addressed in our recent work [42].

5.3 Implementation details

To construct and store the set of trajectories and to implement the underwater noisemodel, we
usedMobilityDB [14], a moving-object database that extends the type system of PostgreSQL
and PostGIS with abstract data types supporting spatiotemporal types and operators to man-
age moving objects. The offered constructs perfectly suit the representation of trajectories,
which can be reconstructed from a sequence of spatiotemporal data, and allow for semantic
enrichment of trajectories. Moreover, it offers spatial and spatiotemporal indices to improve
the efficiency of the high-level procedure described in Algorithm 1.

The motivations behind our choice of MobilityDB for implementing Algorithm 1 are as
follows. The size of the datasets implies that the processing must be made in a database
context. For this reason, we decided to use PostgreSQL and its spatial extension PostGIS.
Although PostGIS enables the representation of trajectories, in which the timestamps are
encoded in the M dimension, the temporal support provided is rather limited. MobilityDB
extends PostgreSQL and PostGIS with temporal capabilities and provides a rich API for
manipulating temporal types. This enables to express processing pipelines such as the one
depicted in Algorithm 1 using PL/pgSQL, PostgreSQL procedural language, which adds
control structures to the SQL language to perform complex computations.
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MobilityDB is implemented in C, as it is PostgreSQL and PostGIS. PostgreSQL takes
care of the store and management of the tables as well as bringing the data from disk storage
to main memory, where the processing is performed. As the query results are represented as
tables, the user may decide to store them back to the database for further processing.

Regarding performance, MobilityDB has efficient data structures that are optimised for
temporal data management. Over these structures, a rich temporal algebra and specialised
spatiotemporal indices are defined. In addition, theMobilityDB data model enables a lossless
data compression by removing redundantmeasureswhen the value does not change orwhen it
can be derived from other valueswith linear interpolation. This process, called normalisation,
enables high compression rates on real-world data, which also enhances the performance.

Finally, expressing spatiotemporal processing in a high-level language such as SQL has
multiple advantages. These include, from the user perspective, a better abstraction level for
formulating complex spatiotemporal pipelines such as those implemented in Algorithm 1,
and from the implementation perspective, that the database management system can perform
efficient query processing estimating the best execution plan for the SQL queries.

Let us present the structure of the table storing the trips of the fishing vessels:

CREATE TABLE vessel_trip (
index integer PRIMARY KEY GENERATED ALWAYS AS IDENTITY,
trip_id integer,
mmsi integer NOT NULL,
vessel_name character varying,
speed tfloat,
activity tint,
trip tgeompoint,
traj geometry

);

Each trip is identified by the attributetrip_id and it is related to the fishing vessel having
mmsi andvessel_name. The attributesspeed andactivitymodel the volatile aspects
representing the speed and the activity of the vessel during the voyage and the attribute trip
models the spatial coordinates of the movement followed by the vessel. These three attributes
have temporal types, allowing for the representation of the variation in time of the speed, the
activity and the position of the fishing vessel starting from the AIS data. The values between
successive instants are interpolated using a linear function for speed and trip whereas
for activity a step function is used. Finally, the attribute traj with type geometry is
employed to visualise the trajectory.

To improve the spatial operations on trajectories, like ST_Intersects, we add a spatial
index on the attribute traj of the table vessel_trip:

CREATE INDEX Vessel_Trip_Geom_Idx ON vessel_trip USING gist(traj);

Indexing speeds up searching by organising the data into a search treewhich can be quickly
traversed to find a particular record. The spatial index structure used is R-Tree.

Once reconstructed the trajectories from the AIS data, we need to get the values of all the
trajectories at the same time instants, every 60 seconds. MobilityDB offers an efficient func-
tion, tsample(), to sample a temporal value according to period buckets. We apply such
a function to get speed, activity and position every minute, i.e., tsample(speed,‘1
min’), tsample(activity,‘1 min’), tsample(trip,‘1 min’), and these
values are inserted into the table vessel_trip for the attributes speed, activity
and trip, respectively. In this way the three temporal values are built on the same set of
minutes, which isT. Figure 3 displays an example of the values for the attributesactivity,
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Fig. 3 Representation of the three temporal types activity, speed and trip

speed and trip. The vertical lines represent the time instants, the three attributes are syn-
chronised and the sample period is one minute. Trip represents the movement of the fishing
vessel, which consists of a sequence of points whose distance between consecutive points
becomes larger because the speed increases. In fact the temporal value speed shows a vari-
ation from 10 kn up to 15 kn. This change of speed causes a shift in activity as well: the
attribute activity varies from 3 denoting fishing to value 4 indicating navigation.

In order to compute the total received noise level for each cell of our grid at a given
frequency f , we proceed as specified by Algorithm 1 and illustrated in Fig. 4. For each
spatiotemporal point p belonging to trip we compute the propagation radius r . By using

Fig. 4 Main steps in the calculation of the noise maps

123



GeoInformatica

the function ST_Buffer we build, around the spatial coordinates of p, a buffer b with
radius r (Step 2 in Fig. 4). Then, we select all the cells whose centroids are inside b through
the predicate ST_Intersects (Step 3 in Fig. 4) and we compute the distance between the
point p and these centroids (Step 4 in Fig. 4).We use this distance to estimate the transmission
loss which allows us to determine the received noise level in the selected cells. By grouping
by cell id and time, we combine all the contributions of the points of the different trajectories
through (7) (Step 5 in Fig. 4).

6 Analyses and results

In this section we present some analyses performed by using our spatiotemporal character-
isation of the underwater noise. We also outline some considerations on model validation,
discussing howourmodel can be comparedwith the spatiotemporal characterisation provided
by the SOUNDSCAPE project.

6.1 Impact of fishery on underwater noise: experimental results

In the following, we illustrate the results of some experiments, which aim at estimating the
impact of fishing activities on underwater noise while also demonstrating the expressiveness
and flexibility of our approach.

6.1.1 Underwater noise maps at different frequencies

The first experiment consists of assessing the impact of the fishing activity on the underwater
noise level considered at different frequencies. Our framework allows us to perform this
analysis according to various time granularities, e.g., yearly, seasonally, monthly or daily.
We chose to focus on June 2020 because it is one of themonthswith the highest fishing activity
in that year. For this period, the AIS dataset consists of 9, 841, 079 records, belonging to 642
fishing vessels (see Table 1).

As explained in Section 3, we consider the frequencies of 63 Hz, 125 Hz, 400 Hz, and
4000 Hz. For each frequency, we created a bivariate map for June, illustrating two variables
at once. The first variable represents the average underwater noise that exceeds the ambient
noise, while the second indicates the percentage of days in the period of analysis (1 month)
in which a cell is active. For a cell c, a day d is called active if the received sound level on
d in c exceeds the ambient noise. Bivariate maps are crucial for understanding underwater
pollution, as the damage on living species depends both on noise level and noise persistence.
Elevated noise levels over a short duration do not affect marine life as significantly as noise
at prolonged intervals, which can have more severe consequences for aquatic ecosystems.

In Fig. 5, we can observe the bivariate maps for June for the frequencies of 63 Hz,
125 Hz, 400 Hz, and 4000 Hz. This figure clearly demonstrates that the impact of fishing
vessels varies significantly depending on the frequency analysed. These variations stem from
several frequency-dependent factors: the initial SPL (SL0), the absorption coefficient (α),
the increased noise generated by the vessel during fishing activities, and the ambient noise,
which rises with higher frequencies. For example, at 63 Hz, ambient noise starts at 60.78 dB,
whereas the lowest value at 4000 Hz is 81.07 dB. Figure 5d shows that at 4000 Hz, fishing
vessels have a negligible impact on the underwater environment: all the cells are characterised
by excess noise levels below 4 dB and only 4% of the study area exhibits persistence greater
than 50%, i.e., two weeks (dark blue cells). In the majority of the cells, 76%, the excess noise
has a low persistence, below one week (light pink cells). Figure 5c displays that at 400 Hz
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(a) 63 Hz. (b) 125 Hz.

(c) 400 Hz. (d) 4000 Hz.

Fig. 5 Underwater noise bivariate maps for June 2020. The red stars are the hydrophones of SOUNDSCAPE

still 93% of the basin presents excess noise level below 4 dB but now there is an area along
the Italian coast, including several harbours, like Rimini and Ancona, extending southward
to CivitanovaMarche (whichmarks the southernmost boundary of the map) where the excess
noise level is between 4 dB and 8 dB for a persistent period (more than 50% of the days -
dark orange cells) reaching the peak over 8 dB in a very limited zone (only 1.35%). Besides,
the area with low excess noise level and low persistence, depicted in light pink, is less than
half (around 31%) of that obtained for the frequency 4000 Hz.

Figure 5a and b illustrate that at 63Hz and 125Hz, fishing vessels have a significant impact
on the ecosystem. In fact, more than 20% of the basin, in areas of the Northern Adriatic Sea
that are most frequently used for fishing, such as in front of Venice and near Ancona and
along the Italian coast, the excess noise levels are over 4 dB with large persistence (more
than two weeks – dark orange and dark red cells). At 63 Hz there is the highest percentage
of cells (almost 16%) with the highest excess noise levels (greater than 8 dB) for a long time
(over two weeks – dark red cells) and the lowest percentage (6.6%) of cells with excess noise
levels under 4 dB for less than 1 week (light pink cells).

6.1.2 Effect of the COVID-19 pandemic

In order to investigate the effect of the COVID-19 pandemic outbreak on underwater noise
due to fishing activities in the Northern Adriatic Sea, we focus on April and June 2020.
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While April 2020 is a month during the lockdown, June 2020 represents the post-lockdown
period, during which fishing activities gradually returned to pre-pandemic levels, reflecting
the easing of restrictions and a progressive resumption of usual activities. Looking at Table 1,
we observe that the number of AIS data in April is limited: only 5, 392, 677 records, slightly
more than half of the AIS data in June, despite April typically being a period of intense fishing
activity. To compare the during-, and post-lockdownperiods,we generated twobivariatemaps
representing the average underwater noise at 125 Hz that exceeds the ambient noise, along
with the persistence of this noise (i.e., the percentage of active days for each cell w.r.t. the
total days of the month). Figure 6a illustrates the excess noise map for April, during the
lockdown. There is a large portion of the basin, i.e., 82%, with an excess noise level below
4 dB and for 31% of the study area there is also a low persistence (below one week – light
pink cells), thus resulting in a very silent sea. The noisiest areas, with excess noise level over
8 dB for a persistent period (more than half a month – dark red cells), are located in the Venice
zone, including Chioggia, and from Ancona to the southernmost part of the map. There is
also a zone in front of the Croatian coast which shows an increase of noise (excess level
between 4 dB and 8 dB and even more 8 dB in several cells) for a persistent period (more
than half a month). It is noteworthy that the cells with higher noise levels are located along
the coast, and this confirms a redistribution of the fishing grounds, being mainly located near
the coasts and in the proximity of the origin harbours as documented in [43]. This behaviour
could be due to the possibility to reduce time at sea, limiting the fuel consumption and the
related costs. In June (Fig. 6b), there is a significant increase in fishing activities w.r.t. April,
as witnessed by the number of AIS data and trips (see Table 1). In the two mentioned zones,
near Venice and near Ancona, we observe a boost in the number of cells characterised by
elevated noise levels and high persistence (around 3%, dark orange and dark red). Notably,
vessels ventured further offshore towards Croatia. Additionally, increased activity is evident
in the region near Rimini, indicating greater exploitation of the area. In fact, in June only
14% of the basin is characterised by low noise levels and low persistence (light pink cells).
Conversely, cells with noise levels below 4 dB but with persistence greater than 50% (dark
blue cells) increase by 12%. These maps clearly points out that the limited fishing activity
during the lockdown has caused a reduction in underwater noise, thus proving the acoustic
impact of fishery in the Northern Adriatic Sea.

(a) April. (b) June.

Fig. 6 During, and post-Covid underwater noise at 125 Hz for the months of April, and June 2020
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Fig. 7 Number of AIS data per day of the week in June 2020

6.1.3 Focus on the most intense fishing days

In order to deepen the analysis on the areas with the highest noise pressure in the month of
June, we investigate how the fishing activity is performed along the days of theweek. Figure 7
illustrates the number of AIS data in June 2020 grouped by the day of the week. The plot
clearly indicates that fishing vessels concentrate their activity between Monday to Thursday
whereas in the weekend a very limited number of vessels go fishing. Hence, we restrict our
analysis to the days from Monday to Thursday, using only AIS data within this time frame.
The resulting dataset includes 89% of the June data while covering 60% of the days. The
possibility to analyse data at different granularity levels is a great advantage offered by our
tool.

Figure 8a presents the bivariate map illustrating the average noise that exceeds the ambient
noise, along with the percentage of days during the week (from Monday to Thursday) when

(a) Average underwater noise. (b) Underwater noise peaks.

Fig. 8 Underwater noise in June 2020 at a frequency of 125 Hz from Monday to Thursday

123



GeoInformatica

the cells are active. This analysis allows us to highlight the areas swept by fishing vessels
during the four days of their highest fishing activity. Notably, we observe an increase in
excess noise levels generated during these days and a reduction of the quiet cells. Compared
to Fig. 6b, which considers all days of the week, there is a 15% increase in areas where
persistence exceeds 50%: the extension of the area with excess noise levels over 8 dB (dark
red) is augmented of 8% while the other two areas, i.e, between 4 dB and 8 dB (dark orange)
and below 4 dB (dark blue) are enlarged by about 3.5%. On the other hand, the number of
cells with excess noise levels below 4 dB and for less than 25% of days decreases by 4.4%.
Clearly, the two regions most exploited by fishing vessels - the area in front of Venice and
the entire area around and in front of Ancona - remain the same, although with greater noise
intensity as well as increased persistence.

To further investigate the noise generated by vessels on these days, we focused on the
noise peaks associated with each cell. In particular, Fig. 8b presents a bivariate map where
the first variable represents the mean of daily peaks in June 2020 (on a scale starting from
10 dB), while the second variable represents the percentage of active days throughout the
month, restricted toMonday through Thursday. Considering the average peaks for themonth,
the resulting noise is significantly higher; in fact, the bivariate map represents only values
exceeding 10 dB.We observe that 19% of the basin includes values between 10 dB and 18 dB,
18.6% are characterised by underwater noise levels between 18 dB and 26 dB, and finally,
20% exhibit noise levels greater or equal than 26 dB, all characterised by a high persistence.
Only 37% of the study area has a peak less than 10 dB. This figure clearly points out that the
area in proximity of a harbour is noisier and in particular the noisiest zones are located at the
south of Venice, in front of Chioggia, as well as the entire zone of Ancona and southward
close to Civitanova Marche. Moreover, this map allows us to recover the main routes of the
fishing activities.

6.1.4 Interactive visualisation of the underwater noise dynamics

Finally, our implementation provides also the possibility of visualising the spreading of
underwater noise in time for a set of vessels. By using QGIS TimeManager, it is possible to
generate animations which visualise the noise propagation determined by the vessels moving
in the Northern Adriatic Sea. The user can choose the boats according to several criteria, such
as the range of horsepower, theMMSI, the length overall, or the activity, and the timewindow
of the analysis. In Fig. 9 we can observe a different sound propagation at 125 Hz depending
on the engine power of the vessel, its speed and its activity.We focus on four vessels: vessel A
has engine power 590.9 Hp, vessel B 613 Hp and vessel C 649.9 Hp (all three with the same
SL0 133 dB), while vessel D has engine power 215.7 Hp (SL0 130 dB). We can observe that
both vessel A and B are fishing (red dot), but vessel A is moving at a speed of 5.67 kn, while
vessel B is moving at 2.5 kn. It is worth to remark that the sound propagates across more cells
(covering more kilometres) for vessel A compared to vessel B, illustrating how speed affects
sound propagation. Vessel C has the same source level as vessels A and B but is not fishing
(green dot) and is moving at a speed of 10.75 kn. Compared to vessel A, despite vessel
C is moving at a higher speed, the sound propagates less underwater. Specifically, sound
propagates approximately 3 km for vessel C and 5 km for vessel A, highlighting the greater
impact of fishing activity compared to the vessel’s speed. Finally, vessel D has the same speed
as vesselC (10.48 kn), and it is not fishing (green dot), but its SL0 is 3 dB lower. This leads to
some differences in sound propagation, as indicated by the reduced number of cells affected
by underwater noise for vessel D compared to vessel C , along with the lower noise levels
received in those cells. For instance, the cell containing vessel C stores 19.3 dB, whereas
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Fig. 9 Propagation of underwater noise of fishing vessels at 125 Hz in the Northern Adriatic Sea on February
3, 2020, at 06:39. Vessels marked with a red dot are fishing, while those marked with a green dot are not
fishing

the cell containing vessel D records only 11 dB, highlighting a difference of approximately
8 dB. These comparisons show how a fishing vessel generates more substantial underwater
noise than a boat merely sailing, even when the latter has a higher speed, as well as how
higher vessel speed contributes to greater underwater sound propagation.

Finally, we would like to point out that these are only a few examples of the analyses that
can be performed using the spatiotemporal database of semantic trajectories. For instance,
we can focus on vessels equipped with specific fishing gear (i.e., LOTB, SOTB, RAP, and
PTM) and determine their impact on the underwater noise level. This fine-grained analysis
could help to reveal different pollution degrees of fisheries that, in turn, could constitute a
basis to implement specific management actions for these activities. Moreover, we can vary
our analysis according to different periods and consider only certain sea areas. For instance,
one could focus on protected areas, like the Pomo Pit or the Sole Sanctuary.

6.2 Model validation

Our model has been calibrated by using the real measurements provided by the project
SOUNDSCAPE. Therefore a natural idea for validating our model might consist in compar-
ing the produced results with the real measurements from the SOUNDSCAPE hydrophones.
We start by remarking that a direct quantitative comparison is not possible since our model
is aimed to estimate the underwater noise generated only by fishing vessels, while the
hydrophones recorded the noise generated by all shipping vessels, including also touris-
tic and commercial vessels. Additionally, the nine monitoring stations are located in fixed
positions near ports (except for the MS9 hydrophone, as shown in Fig. 1), where the traffic
from other vessel types is certainly present.

Still, some interesting observations can bemade, suggesting the adequacy of ourmodel. In
general, given that our model restricts to fishing vessels, we can only expect that we provide
an underestimation of the underwater noise. An example of proper underestimation is shown
in Fig. 10. In light green, the recorded values for hydrophone MS1 clearly detect the passage
of a vessel between 5:11 am and 6:12 am, after which the measurements return to the ambient
noise level (from 6:13 am to 6:29 am). Instead, our model (dark green) remains constantly
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Fig. 10 Underwater noise measurements at 400 Hz from 5:11 am to 6:29 am on June 1, 2020. For each minute,
the underwater noise recorded by hydrophoneMS1 (in light green) is represented, as well as the noise recorded
by the centroid of the cell in which the hydrophone is located calculated using our model (in dark green)

on the ambient noise level. In fact, no fishing vessel passes in the cell where the hydrophone
is located during that time period.

A closer correspondence can be detected when a fishing vessel is crossing a cell in which
a hydrophone is located. In this case, one can observe a similar trend in the underwater
noise level received by the hydrophone compared with the one generated by our model. An
example is in Fig. 11a which illustrates minute-by-minute data received by hydrophoneMS7
at 125 Hz (in light green) taken on June 22, 2020, from 02:29 am to 02:45 am, compared
with the noise levels computed using our model for the virtual listening point located at the
centroid of the hydrophone’s cell (in dark green). Observe that from 02:29 am the noise level
received both at the hydrophone and at the virtual listening point rises, reaching a peak at
02:38 am, before gradually decreasing again until the end of the observations. Some slight
differences can be possibly explained by recalling that the centroid and the hydrophone do not
share identical geographic coordinates (hydrophone MS7 is situated approximately 274.59
metres away from the cell centroid). Also, variations in environmental conditions and natural
sound sources are always present. Figure 11b instead reveals a difference between our noise
estimation and the noise measured by the corresponding hydrophone which extends through
almost the entire time period of analysis (around one hour). This can be interpreted as a
situation in which the hydrophone records the noise produced by a fishing vessel passing
through the cell (whose trend is replicated in our model) superposed with additional noise
produced by non-fishing vessels that are invisible in our model.

Future improvements in model validation could be achieved by acquiring AIS data for
all vessel types, including cargo ships, ferries, and others. This would allow for conducting
a well-established procedure for quantitative validation (see e.g. [5, 44]), which is based on
the comparison, over a given period, between the hydrophones’ measures and the values
produced by the model in the nine cells where the hydrophones are placed. However, it
is worth noticing that having AIS data from all vessels may not prevent the model from
providing an underestimation of the underwater noise, as there are some vessels (e.g. small
recreational boats) for which the AIS transceiver is not mandatory.
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7 Concluding remarks

Monitoring the underwater noise pollution due to human activities is an important task for
maintaining a healthy marine ecosystem. In this paper, we proposed a framework for the
characterisation of underwater noise based on semantic trajectories. Starting from the AIS
data transmitted by vessels, we reconstructed the vessels’ trajectories and deployed them in a
spatiotemporal database. The trajectories were enriched with semantic annotations useful to
infer how the noise spreads in the area of interest. To estimate the noise generated by vessels,
we defined a model for underwater sound propagation based on a combination of spherical
and mode stripping propagation. The model takes into account the bathymetry of the area
and the relevant environmental variables, such as sea temperature, pH, and sea salinity.

As a case study, we examined the fishing activities in the Northern Adriatic Sea during the
year 2020. We implemented the spatiotemporal database of the fishing vessels trajectories
using MobilityDB and used it to perform some analyses, aiming to showcase the flexibility
and expressiveness of our approach. We presented also a qualitative validation of our model
w.r.t. the SOUNDSCAPE measurements. A quantitative validation was not possible because
we only consider the AIS data of fishing vessels, so the other marine traffic is invisible to our
model. However, for the transits of fishing vessels only, the noise perceived by our virtual
listening points seems to be aligned with the one perceived by the real hydrophones.

The proposed approach has many advantages. First, having a spatiotemporal database that
stores the noise levels produced by vessels allows to readily obtain noise maps at different
time and space granularities, e.g., on a daily basis, or monthly, or seasonally. Second, the
framework can be used in absence of hydrophones, which can be expensive to install and
maintain, and cover a limited area. In our case study, we do calibrate the ambient noise of
the model with respect to real measurements from hydrophones, but it is possible to use the
model by simply assuming a reasonable value for the ambient noise. Third, it enables the
distinction of contributions to underwater noise from different ship types, including not only
fishing vessels but also commercial or cruise ships, provided that the AIS data are available.
In this regard, we plan to acquire AIS data for all maritime traffic and, consequently, extend
our analysis.

A drawback of our approach is that the boats without an AIS transceiver cannot be mod-
elled. It is therefore not possible to estimate their contribution to the total noise, which, as a
consequence, could be underestimated. This means that areas of the sea showing high values

(a) June 22, 2020, from 02:29 am to 02:45 am.

Hydrophone MS7 at 125 Hz.

(b) June 2, 2020, from 00:00 am to 1:04 am.

Hydrophone MS1 at 125 Hz.

Fig. 11 Underwater noise measurements at different frequencies taken for each minute that a fishing vessel
passes through the cell where a hydrophone is located. For each minute, the underwater noise detected by the
hydrophone is represented (in light green), along with that detected by the cell centroid calculated using our
model (in dark green)
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of underwater noise are surely risky for the underwater world, whereas areas that result to be
quiet could hide some untracked noise.
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